Cho hình chữ nhật ABCD có AC giao với BD tại O Gọi K là điểm đối xứng với D qua A và I là trung điểm của AB
a) Chứng minh rằng tứ giác AKBC là hình bình hành và suy ra K,I,C thẳng hàng
b) Qua A vẽ đường thẳng song song với BD cắt BK tại M. Chứng minh M đối xứng với O qua AB
c) KC giao với BD tại N. Chứng minh rằng KC = 3NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do I đối xứng với D qua H nên HI = HD.
Xét tứ giác BDEI có HI = HD; HB = HE nên BDEI là hình bình hành.
Lại có \(\widehat{EDB}=90^o\) nên BDEI là hình chữ nhật.
b) Do BDEI là hình chữ nhật nên IE // BD và IE = BD.
Vậy thì ta cũng có ngay IE // DL và IE = DL
Suy ra tứ giác IDLE là hình bình hành (dấu hiệu nhận biết)
c) Xét tam giác EBL có ED là đường cao đồng thời trung tuyến. Vậy tam giác EBL cân tại E hay \(\widehat{EBL}=\widehat{ELB}\)
Do tam giác ABC cân tại A nên \(\widehat{EBL}=\widehat{ACB}\) , suy ra \(\widehat{ACB}=\widehat{ELB}\)
Chúng lại ở vị trí đồng vị nên EL // GC.
Theo câu b, IDLE là hình bình hành nên IE // DL và ID // EL , vậy thì ID // GC
Xét tứ giác IGCD có: IG // DC; ID // GC nên IGDC là hình bình hành.
d) Ta có EG // BC nên tam giác AEG cân tại A hay AE = AG
Xét tam giác vuông FEG có AE = AG nên \(\widehat{AEG}=\widehat{AGE}\Rightarrow\widehat{AFE}=\widehat{AEF}\Rightarrow AE=AF\)
Vậy thì A là trung điểm EF.
Theo đề bài thì DFKC là hình chữ nhật nên FK song song và bằng DC
Lại có IGCD là hình bình hành nên IG song song và bằng DC.
Vậy thì FK song song và bằng IG hay FKGI là hình bình hành.
Suy ra FG và IK cắt nhau tại trung điểm mỗi đường.
A là trung điểm FG nên A là trung điểm IK. Vậy I, A, K thẳng hàng.
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
Hình:
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)
Nên tứ giác BMCO là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)
Tương tự, tứ giác OCND là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)
Suy ra tứ giác BMND là hình bình hành
b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD
Đồng thời BM//AC
Nên AC⊥BD
c) Vì BMCO là hình bình hành nên MC//BD (3)
Và BMND là hình bình hành nên MN//BD (4)
Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)
Vậy ...
Xét tứ giác OBMC ta có
2 đường chéo BC và OM cắt nhau tại I
I là trung điểm BC (gt)
I là trung điểm OM ( M là điểm đối xứng của O qua I)
-> tứ giác OBMC là hbh
cmtt tứ giác ODNC là hbh
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN // OC
ta có
BM = OC ( OBMC là hbh)
DN = OC (ODNC là hbh)
-.> BM = ON
Xét tứ giác BMND ta có
BM // ON (cmt)
BM = ON (cmt)
-> tứ giác BMND là hbh
b) giả sử BMND là hcn
ta có
MB vuông góc BD ( BNMD là hcn)
BM // OC ( OBMC là hbh)
-> BD vuông góc OC tại O
Vậy AC vuông góc BD thì BMND là hcn
c) ta có
BD // CM ( OB // CM ; O thuộc BD)
BD // CN ( OD //CN . O thuộc BD)
-> CM trùng CN
-> C,N,M thẳng hàng