K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

2x - y = 34

2 . x = 34

x = 34 : 2

x = 17

HT

10 tháng 11 2021

:2x-y=34

 2 .x = 34

x = 34 : 2

x =17

HT

27 tháng 8 2017

a,\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)

=> x = 21; y = 9

b, \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 38; y = 42

27 tháng 8 2017

Dễ lém sao đăng z?

27 tháng 9 2017

a) \(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Theo tính chất dãy tỉ số bằng nhau:

  \(\frac{x}{7}=\frac{y}{3}=\frac{5x-2y}{5.7-2.3}=\frac{87}{29}=3\)

=> x = 7 x 3 = 21 ; y = 3x3 =9

b) \(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)

=> \(x=19.2=38\) ; \(y=21.2=42\)

17 tháng 10 2017

Ta có:

\(\dfrac{x}{19}=\dfrac{y}{21}\Leftrightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{38}=2\Rightarrow x=38\\\dfrac{y}{21}=2\Rightarrow y=42\end{matrix}\right.\)

Vậy ..............

Chúc bạn học tốt!

17 tháng 10 2017

\(\dfrac{x}{19}\)=\(\dfrac{y}{21}\) và 2x - y = 34

+ Ta có : \(\dfrac{x}{19}\)=\(\dfrac{y}{21}\)\(\Rightarrow\)\(\dfrac{2.x}{2.19}\)=\(\dfrac{y}{21}\)\(\Rightarrow\dfrac{2.x}{38}\)=\(\dfrac{y}{21}\) và 2x-y=34

+ Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2.x}{38}\)=\(\dfrac{y}{21}\)=\(\dfrac{2.x-y}{38-21}\)=\(\dfrac{34}{17}\)=2

\(\Rightarrow\left\{{}\begin{matrix}x=2.38=76\\y=2.21=42\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)

Vậy x=38 và y=42 cần tìm.

16 tháng 8 2015

Áp dụng dãy tỉ só bằng nhau ta có  :

     \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 2.19 = 38 

=> y = 2.21 = 42 

11 tháng 6 2019

Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)

\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

11 tháng 6 2019

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)

\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)

\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)

\(=25x^2+45x+15+8+10x-40x-50x^2\)

\(=-25x^2+15x+23\)

\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

8 tháng 4 2019

Áp dụng bđt AM-GM:

\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)

\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)

\(\ge2\sqrt{\frac{4x^2}{x^2}}+2\sqrt{\frac{9y^2}{y^2}}+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)

\("="\Leftrightarrow x=y=\pm1\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)