phân tích da thức thành nhân tử
a) a2+b2
b) a4+b4
c) a2-a
d) a2-3a+2
e) a2-5a+6
g) a2-7a+12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^4+a^2+1\)
\(=\left(a^2\right)^2+2a^2+1-a^2\)
\(=\left(a^2+1\right)^2-a^2\)
\(=\left(a^2+1-a\right)\left(a^2+1+a\right)\)
\(---\)
\(b,a^4+a^2-2\)
\(=a^4-a^2+2a^2-2\)
\(=a^2\left(a^2-1\right)+2\left(a^2-1\right)\)
\(=\left(a^2-1\right)\left(a^2+2\right)\)
\(=\left(a-1\right)\left(a+1\right)\left(a^2+2\right)\)
\(---\)
\(c,x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(a.a^4+a^2+1\)
\(=\left(a^4+2a^2+1\right)-a^2\)
\(=\left(a^2+1\right)^2-a^2\)
\(=\left(a^2+1+a\right)\left(a^2+1-a\right)\)
\(b.a^4+a^2-2\)
\(=a^4+2a^2-a^2-2\)
\(=a^2\left(a^2+2\right)-\left(a^2-2\right)\)
\(=\left(a^2+2\right)\left(a^2-1\right)\)
\(=\left(a^2+2\right)\left(a-1\right)\left(a+1\right)\)
\(c.x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14\)
\(=x^3\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x^3-7x\right)\left(x+2\right)\)
\(=x\left(x-7x\right)\left(x+2\right)\)
a,\(5ab-45a^3b\)
=\(5ab\left(1-9a^2\right)\)
=\(5ab\left(1-3a\right)\left(1+3a\right)\)
b,\(3a-6ab+5-10b\)
=\(\left(3a-6ab\right)+\left(5-10b\right)\)
=\(3a\left(1-2b\right)+5\left(1-2b\right)\)
=\(\left(1-2b\right)\left(3a+5\right)\)
c,\(a^2-7ab-2a+14b\)
=\(\left(a^2-7ab\right)-\left(2a-14b\right)\)
=\(a\left(a-7b\right)-2\left(a-7b\right)\)
=\(\left(a-7b\right)\left(a-2\right)\)
d,\(4a^2-8b+4a-8ab\)
=\(\left(4a^2-8ab\right)+\left(4a-8b\right)\)
=\(4a\left(a-2b\right)+4\left(a-2b\right)\)
=\(\left(a-2b\right)\left(4a+4\right)\)
=\(4\left(a-2b\right)\left(a+1\right)\)
e,\(a^2-5a+15b-9b^2\)
=\(\left(a^2-9b^2\right)-\left(5a-15b\right)\)
=\(\left(a-3b\right)\left(a+3b\right)-5\left(a-3b\right)\)
=\(\left(a-3b\right)\left(a+3b-5\right)\)
\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
\(=c\left(a-b\right)^2+\left[ab^2+ac^2+a^2b+bc^2-a^3-b^3-c^3\right]\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)+ab^2+a^2b-a^3-b^3\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a^3-a^2b\right)+\left(ab^2-b^3\right)\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-a^2\left(a-b\right)+b^2\left(a-b\right)\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a+b\right)\left(a-b\right)^2\)
\(=-\left(a-b\right)^2\left(a+b-c\right)+c^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
\(a,=\left(a-5\right)^2-4b^2=\left(a-2b-5\right)\left(a+2b-5\right)\\ b,=ax^2+a-a^2x-x=ax\left(a-x\right)+\left(a-x\right)=\left(ax+1\right)\left(a-x\right)\)
a: \(=\left(a-5-2b\right)\left(a-5+2b\right)\)
b: \(ax^2+a-a^2x-x\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
Lời giải:
a. $a^4+a^3+a^2+a=(a^4+a^3)+(a^2+a)$
$=a^3(a+1)+a(a+1)=(a+1)(a^3+a)=a(a+1)(a^2+1)$
b. $3xy^2+5y-3x^2y+(-5x)=(3xy^2-3x^2y)+(5y-5x)$
$=3xy(y-x)+5(y-x)=(y-x)(3xy+5)$
c. $xy-z+y-xz=(xy+y)-(z+xz)=y(x+1)-z(x+1)=(x+1)(y-z)$
d.
$x^2-bx+ax-ab=(a^2+ax)-(bx+ab)=a(a+x)-b(a+x)=(a+x)(a-b)$
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
a) \(a^2+ab-7a-7b=a\left(a+b\right)-7\left(a+b\right)=\left(a+b\right)\left(a-7\right)\)
b) \(5ab+4c+20b+ac=5b\left(a+4\right)+c\left(a+4\right)=\left(a+4\right)\left(5b+c\right)\)
c) \(a^2+6a-b^2+9=\left(a+3\right)^2-b^2=\left(a+b-b\right)\left(a+3+b\right)\)
d) \(a^2-16=\left(a-4\right)\left(a+4\right)\)
a) \(25a^2-1=\left(5a-1\right)\left(5a+1\right)\)
b) \(a^2-9=\left(a-3\right)\left(a+3\right)\)
c) \(\dfrac{1}{4}a^2-\dfrac{9}{25}=\left(\dfrac{1}{2}a-\dfrac{3}{5}\right)\left(\dfrac{1}{2}a+\dfrac{3}{5}\right)\)
d) \(\dfrac{9}{4}a^4-\dfrac{16}{25}=\left(\dfrac{3}{2}a^2-\dfrac{4}{5}\right)\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)\)
e) \(\left(2a+b\right)^2-a^2=\left(2a+b-a\right)\left(2a+b+a\right)=\left(a+b\right)\left(3a+b\right)\)
f) \(16\left(x-1\right)^2-25\left(x+y\right)^2=\left(4x-4-5x-5y\right)\left(4x-4+5x+5y\right)=\left(-x-4-5y\right)\left(9x+5y-4\right)\)
a/ $25x^2-1\\=(5x)^2-1^2\\=(5x-1)(5x+1)$
b/ $a^2-9\\=a^2-3^2\\=(a-3)(a+3)$
c/ $\dfrac{1}{4}a^2-\dfrac{9}{25}\\=\left(\dfrac{1}{2}a\right)^2-\left(\dfrac{3}{5}\right)^2\\=\left(\dfrac{1}{2}a-\dfrac{3}{5}\right)\left(\dfrac{1}{2}a+\dfrac{3}{5}\right)$
d/ $\dfrac{9}{4}a^4-\dfrac{16}{25}\\=\left(\dfrac{3}{2}a^2\right)^2-\left(\dfrac{4}{5}\right)^2\\=\left(\dfrac{3}{2}a^2-\dfrac{4}{5}\right)\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)\\=\left[\left(\sqrt{\dfrac 3 2}a\right)^2-\left(\dfrac{2\sqrt 5}{5}\right)^2\right]\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)\\=\left(\sqrt{\dfrac 3 2}a-\dfrac{2\sqrt 5}{5}\right)\left(\sqrt{\dfrac 3 2}a+\dfrac{2\sqrt 5}{5}\right)\left(\dfrac{3}{2}a^2+\dfrac{4}{5}\right)$
e/ $(2a+b)^2-a^2\\=(2a+b-a)(2a+b+a)\\=(a+b)(3a+b)$
f/ $16(x-1)^2-25(x+y)^2\\=[4(x-1)]^2-[5(x-y)]^2\\=[4(x-1)-5(x-y)][4(x-1)+5(x-y)]\\=[4x-4-5x+5y][4x-4+5x-5y]\\=(-x+5y-4)(9x-5y-4)$
a) Gợi ý: a 2 - 7a - 8 = (a + 1) (a - 8) và a 2 - 5a + 6 = (a + 2) (a - 3).
Tính được kết quả là: a − 8 a + 2
b) 2 b 2 b + 3
\(a,Sửa:a^2-b^2=\left(a-b\right)\left(a+b\right)\\ b,=a^4+2a^2b^2+b^4-2a^2b^2\\ =\left(a^2+b^2\right)^2-2a^2b^2=\left(a^2+b^2-ab\sqrt{2}\right)\left(a^2+b^2+ab\sqrt{2}\right)\\ c,=a\left(a-1\right)\\ d,=a^2-a-2a+2=\left(a-1\right)\left(a-2\right)\\ e,=a^2-2a-3a+6=\left(a-2\right)\left(a-3\right)\\ g,=a^2-3a-4a+12=\left(a-3\right)\left(a-4\right)\)