cho tam giác ABC cân tại A , M nằm trong tam giác ABC sao cho MB < MC . CMR : góc AMB > góc AMC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*,tam giác HAB bằng tam giác HAC (ch-cgv) suy ra HA=HB mà AH vuông góc với BC nên AH là đương trung trực của BC
do đó:MH là đường trung trực của BC => MB=MC
*,ta có AH la đường trung tuyến của tam giác vuông nên AH= BC/2=BH (định lí)
mặt khác BH<BM(quan hệ đường xiên và đượng vuông góc)
Do đó: AH<BM
xét tam giác BMH và tam giác CMH có góc BHM= góc CHM=90 độ
BM=CM
HM là cạnh chung
=>BH=CH
=> H là trung điểm cạnh BC
Xét tam giác vuông ABC vuông tại A có H là trung điểm cạnh BC
=> AH=BH (1)
Xét tam giác BHM vông tại H => BM là cạnh lớn nhất => BM>BH (2)
Từ (1)(2)=> BM>AH
a, Vì tam giác ABC cân tại A ,mà góc A =100 độ => góc B=góc C= (180 độ -góc A) : 2 = (180 độ - 100 độ ) : 2 = 80độ : 2 = 40 độ
=>Góc ACM = 40độ -20 độ = 20độ , Góc ABM = 40độ - 10 độ =30độ
Vì CE=CB (gt) => tam giác ECB cân tại C =>Góc CBE = góc CEB = (180độ-góc ECB):2 = ( 180độ - 40độ) :2 = 140độ:2 = 70 độ
Mà góc EBM +góc MBC = góc EBC => Góc EBM + 10 độ = 70 độ => gócEBM = 70độ -10độ=60độ (1)
Xét tam giác EMC và tam giác BMC có : Cạnh MC chung , Góc ECM= góc BCM , EC = BC(gt)
=> tam giác EMC = tam giác BMC => Góc CEM = góc CBM = 10độ
Lại có : góc BEM + góc MEC = góc BEC => góc BEM + 10 độ = 70 độ => góc BEM = 70 độ - 10 độ = 60độ (2)
Từ (1) và (2) suy ra tam giác BEM đều
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
Bạn nào tick cho tui thì may mắn cả năm còn ai ko tick sẽ xui cả năm lun
Nào thì ô tô đâm,bóng điện rôi vào đầu
KO tick sẽ như thế
chúc ai ko tick xui cả năm nay