Cho khối lăng trụ ABCD. A'B'C'D'có đáy ABCD là hình vuông cạnh a và có thể tích bằng 3 a 2 . Tính chiều cao h của khối lăng trụ ABCD. A'B'C'D'.
A. h=5a
B. h=8a
C. h=4a
D. h=3a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
V A B C D . A ' B ' C ' D ' = S A B C D . h ⇒ h = a 3 a 2 = a
Đáp án C
Đường cao của hình lăng trụ là
h = V S A B C D = 3 a 3 a 2 = 3 a
Đáp án B
V A B C D . A ' B ' C ' D ' = S A B C D . h ⇒ h = a 3 a 2 = a
Đáp án D
Gọi H là trung điểm của BC, kẻ H K ⊥ C ' D ' K ∈ C ' D '
Suy ra B H ⊥ A ' B ' C ' D ' ⇒ A C ' D ' ; A ' B ' C ' D ' ^ = B K H ^
Tam giác A’C’D’ đều cạnh 2 a ⇒ H K = d A ' ; C ' D ' = a 3
Tam giác BHK vuông tại H ⇒ B H = tan 60 ∘ x H K = 3 a
Diện tích hình thoi A’B’C’D’ là S A ' B ' C ' D ' = 2 a 2 3 .
Vậy thể tích khối lăng trụ ABC.A’B’C’D’ là V = B H . S A ' B ' C ' D ' = 3 a .2 a 2 3 = 6 3 a 3
Đáp án D
V = A A ' . S A B C D = A A ' . A C . B D 2 = 4 a 3 .
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)