Cho đường tròn (O;R) từ M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MA (A là tiếp điểm) . Vẽ AH vuông góc với OM
a) Tính OH.OM theo R
b) Vẽ đường kính AB, BM cắt đường tròn (O;R) tại C. Vẽ OI vuông góc với BC tại I. CMR: OI//AC
c) CM: MH.MO= MB.MC
d) Biết OH cắt OI và BC tại N và K. CMR: HK+HN> 2.AH
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
c: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó:ΔABC vuông tại C
Xét ΔOMA vuông tại A có AC là đường cao
nên \(MB\cdot MC=MA^2\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MB\cdot MC=MH\cdot MO\)
c: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó:ΔABC vuông tại C
Xét ΔOMA vuông tại A có AC là đường cao
nên MB⋅MC=MA2(1)MB⋅MC=MA2(1)
Xét ΔOAM vuông tại A có AH là đường cao
nên MH⋅MO=MA2(2)MH⋅MO=MA2(2)
Từ (1) và (2) suy ra MB⋅MC=MH⋅MO