Câu 9:
Số dư của 20+21+22+...+2100 khi chia cho 15 là
chỉ cần đáp án
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=20+21+22+23+...2100
2A=21+22+...+2101
2A-A=(21+22+...+2100)-(20+21+...+2100)
A=2101-1
Mà 2101-1=(........02)-1=........01 chia 100 dư 1
Chúc bạn học tốt.
Ta có
2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100
= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )
= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2
= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98
Mà 7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7
Nên 2 + 7 2 2 + 2 5 + . . . + 2 98 : 7 d ư 2
A=20+21+22+23+(24+25+..+31) + (32+33+...+39)+...+ (21009+21010+...+21015)+21016
A=80+6+21016+(24+25+..+31) + (32+33+...+39)+...+ (21009+21010+...+21015)
Ta thấy mỗi dấu ngoặc là 8 số tự nhiên liên tiếp có số dư lần lượt là 0,1,2,..,7 có 0+1+2+...+7=28
Số số hạng được chứa trong dấu ngoặc là: (21015-24):1+1=20992 số
Số cặp đó là: 20992:8=2624 Cặp
Do vậy số dư của A chia 8 bằng số dư của B=6+28.2624 (do 80 và 21016 \(⋮\)8)
Mà 2624\(⋮\)8
Nên số dư của A cho 8 là 6
P/S: Bài này em có thể tính tổng ra rồi chia nhưng sẽ cồng kềnh
\(A=1+2+2^2+2^3+...+2^{100}\)
\(=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=1+3\left(2+2^3+...+2^{99}\right)\)
=>A chia 3 dư 1
Tìm số a094 nhỏ nhất mà khi chia cho 2, 3 và 5 đều dư 1.a = 0,9 và dư 1