đường thẳng (d) y=x+2 va (P) y=x^2 cắt nhau tại 2 điểm phân biệt là A(2;4) và B(-1;1) .Tìm Điểm M thuộc cung AB sao cho d.tích tam giác MAB lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
a.
Phương trình hoành độ giao điểm:
\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)
\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)
\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)
\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)
\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)
b.
Pt hoành độ giao điểm:
\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)
\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)
Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)
\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)
\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)
\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)
\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)
\(=18-4\left(-m-2\right)+6m+2m^2\)
\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)
Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)
PTHĐGĐ là:
x^2-2x-m=0(1)
Thay x=-1 vào (1), ta được
(-1)^2-2*(-1)-m=0
=>1+2-m=0
=>m=3
x1+x2=2
=>x2=2-(-1)=3
=>A(-1;1); B(3;9)
- xét phương trình hoành độ giao điểm : \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
- Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
- \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
- \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Phương trình hoành độ giao điểm là:
\(x^2-mx+1=0\)
\(\text{Δ}=m^2-4\)
Để (P) cắt (d) tại hai điểm phân biệt thì (m-2)(m+2)>0
=>m>2 hoặc m<-2