Cho Elip x 2 5 + y 2 4 = 1 . Tính tỉ số của tiêu cự với độ dài trục lớn của Elip.
A. 5 4
B. 5 5
C. 3 5 5
D. 2 5 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Elip (E) có tỉ số độ dài trục nhỏ và tiêu cự bằng 2 ⇒ 2 b 2 c = 2 ⇒ c = b 2 2 .
Mặt khác, 2 a 2 + 2 c 2 = 64 ⇔ a 2 + c 2 = 16 .
Ta có
c = b 2 2 a 2 + c 2 = 16 a 2 = b 2 + c 2 ⇒ a 2 + 1 2 b 2 = 16 a 2 − 3 2 b 2 = 0 ⇔ a 2 = 12 b 2 = 8
Phương trình chính tắc của Elip là E : x 2 12 + y 2 8 = 1 .
Chọn A.
Đáp án B
Do trục lớn là 6 nên 2a= 6 => a= 3
Gọi phương trình chính tắc của Elip có dạng:
Tỉ số của tiêu cự với độ dài trục lớn bằng 1/3.
Nên:
Mà a= 3 nên c= 1 => b2= a2- c2= 9- 1= 8
Vậy phương trình ( E) cần tìm là:
Elip (E) có độ dài trục lớn bằng 6 nên 2a= 6 hay a= 3.
Elip (E) có tỉ số của tiêu cự với độ dài trục lớn bằng 1 3
a, Phương trình chính tắc của (E) có dạng
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a
Ta có A(0;2) \(\in\left(E\right)\)<=>b=2
(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)
Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3
==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)
c, S=4ab=24
Gọi phương trình chính tắc của elip là: x 2 a 2 + y 2 b 2 = 1
Vì elip đi qua điểm A 2 ; 3 do đó thay tọa độ điểm A vào ta được
4 a 2 + 3 b 2 = 1 (1)
Theo đề bài tỉ số của độ dài trục lớn và tiêu cực là
2 a 2 c = a c = 2 3 ⇔ a = 2 c 3 ⇔ 3 a 2 = 4 c 2
Mà c 2 = a 2 - b 2 ta có 3 a 2 = 4 a 2 - b 2 ⇔ a 2 - 4 b 2 = 0 (2)
Gọi phương trình chính tắc của Elip có dạng
.
Elip x 2 5 + y 2 4 = 1 có a2= 5; b2= 4 => c2= 5-4= 1 => c= 1
Độ dài trục lớn: 2 a = 2 5 và tiêu cự: 2c= 2
Tỉ số e = 2 c 2 a = 1 5
Chọn B.