Cho hình chóp S.ABCD có đáy là hình vuông, hình chiếu của S lên (ABCD) là điểm H thuộc cạnh AB thỏa mãn HB=2HA, góc giữa SC và (ABCD) bằng 60 0 . Biết rằng khoảng cách từ A đến (SCD) bằng 26 . Tính thể tích V của khối chóp S.ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
+) d(A;(SCD)) = d(H;(SCD)) xác định khoảng cách từ H đến (SCD).
+) Xác định góc giữa SC và mặt đáy.
+) Đặt cạnh của hình vuông ở đáy là x, tính SH và HI theo x.
+) Sử dụng hệ thức lượng trong tam giác vuông để tìm x.
Cách giải:
Giả sử độ dài cạnh hình vuông ở đáy là x. Khi đó, HI = x
Đáp án B
Ta có d(K;(SCD))
Ta có
Có góc giữa SC và đáy là nên ta có
Ta có
Đáp án B
d K , S C D = 1 2 d H , S C D = 1 2 H F .
A H = 1 3 A B = 1 3 a ; B H = 2 3 A B = 2 3 a
C H = B H 2 + B C 2 = 13 3 a .
C ó g ó c g i ữ a S C v à đ á y l à 60 ° n ê n t a c ó
S C H ^ = 60 0 ⇒ S H = tan 60 0 . C H = 39 3 a
ta có 1 H F 2 = 1 H E 2 + 1 A H 2 ⇒ H F = 13 4 a
Đáp án B.
Ta có A D / / B C , A D ∉ ( S B C ) , B C ⊂ ( S B C ) ⇒ A D / / ( S B C )
⇒ d ( A D ; S C ) = d ( A D ; ( S B C ) ) = d ( D ; ( S B C ) ) .
Qua I kẻ đường thẳng song song với AD, cắt CD tại H.
Suy ra I H ⊥ C D
Từ C D ⊥ I H , C D ⊥ S I ⇒ C D ⊥ ( S I H ) ⇒ C D ⊥ S H .
Suy ra ( S C D ) , ( A B C D ) ⏜ = S H , I H ⏜ = S H I ⏜ ⇒ C D ⊥ S H
S I = H I . tan S H I ⏜ = a . tan 60 ° = a 3 ⇒ V S . B C D = 1 2 S A B C D = a 3 3 6 .
Lại có V S . B C D = 1 3 . S ∆ S B C . d ( D ; ( S B C ) ) ⇒ d ( D ; ( S B C ) = 3 V S . B C D S ∆ S B C (1)
Từ I B = 2 3 A B = 2 3 a ⇒ S B = S I 2 + I B 2 = a 3 2 + 2 a 3 2 = a 31 3 .
Từ B C ⊥ A B , B C ⊥ S I ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S B ⇒ ∆ S B C vuông tại B.
Suy ra S ∆ S B C = 1 2 S B . S C = 1 2 . a 31 3 . a = a 2 31 6 (2)
Từ (1) và (2), suy ra d ( D ; ( S B C ) ) = 3 a 3 3 6 a 2 31 6 = 3 a 3 31 = 3 39 31 a
Vậy d ( A D ; S C ) = d ( D ; ( S B C ) ) = 3 93 31 a
Chọn đáp án D.
Ta có:
Kẻ
Kẻ
Xét tam giác SHI vuông tại H:
Xét tam giác SHB vuông tại B:
Đáp án B.
Ta có AD//BC, => AD//(SBC)
=> d(AD;SC) = d(AD;(SBC)) = d(D;(SBC)).
Qua I kẻ đường thẳng song song với AD, cắt CD tại H.
Suy ra IH ⊥ CD
Từ CD ⊥ IH, CD ⊥ SI=> CD ⊥ (SIH)=> CD ⊥ SH
Suy ra
Lại có
Từ
Suy ra
Từ (1) và (2), suy ra
Vậy
Ta có
\(SH\perp\left(ABCD\right);SH\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(ABCD\right)\)
Trong mp (ABCD) từ C dựng đường thẳng vuông góc với BD cắt BD tại F ta có
\(SH\perp\left(ABCD\right);CF\in ABCD\Rightarrow SH\perp CF\)
Mà \(CF\perp BD\)
Ta có \(BD\in\left(SBD\right);SH\in\left(SBD\right)\)
\(\Rightarrow CF\perp\left(SBD\right)\) => CF là khoảng cách từ C đến (SBD)
Trong mp (ABCD) nối CH cắt AD tại E
Ta có BC//AD \(\Rightarrow\dfrac{BC}{ED}=\dfrac{HB}{HD}=\dfrac{HC}{HE}=1\Rightarrow ED=BC=\dfrac{3a}{2}\)
\(\Rightarrow EA=AD-ED=3a-\dfrac{3a}{2}=\dfrac{3a}{2}=BC\)
Mà BC//AE và \(\widehat{ABC}=90^o\)
=> ABCE là hình chữ nhật
Trong mp (ABCD) từ H dựng đường thẳng vuông góc với CD cắt CD tại K
Xét tg vuông CDE có
\(CD=\sqrt{CE^2+ED^2}=\sqrt{4a^2+\dfrac{9a^2}{4}}=\dfrac{5a}{2}\)
Xét tg vuông ABD có
\(BD=\sqrt{AB^2+AD^2}=\sqrt{4a^2+9a^2}=a\sqrt{13}\)
\(\Rightarrow HB=HD=\dfrac{BD}{2}=\dfrac{a\sqrt{13}}{2}\)
Xét tg vuông CKH và tg vuông CED có \(\widehat{ECD}\) chung
=> tg CKH đồng dạng với tg CED (g.g.g)
\(\Rightarrow\dfrac{CK}{CE}=\dfrac{HC}{CD}\Rightarrow CK=\dfrac{CE.HC}{CD}=\dfrac{2a.a}{\dfrac{5a}{2}}=\dfrac{4a}{5}\)
Xét tg vuông CKH có
\(HK=\sqrt{HC^2-CK^2}=\sqrt{a^2-\dfrac{16a^2}{25}}=\dfrac{3a}{5}\)
Xét tg vuông DKH và tg vuông DFC có \(\widehat{BDC}\) chung
=> tg DKH đồng dạng với tg DFC (g.g.g)
\(\Rightarrow\dfrac{HK}{CF}=\dfrac{HD}{CD}\Rightarrow CF=\dfrac{HK.CD}{HD}=\dfrac{\dfrac{3a}{5}.\dfrac{5a}{2}}{\dfrac{a\sqrt{13}}{2}}=\dfrac{3a\sqrt{13}}{13}\)