K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

24 tháng 5 2019

Đáp án C

Phương pháp:

+) d(A;(SCD)) = d(H;(SCD)) xác định khoảng cách từ H đến (SCD).

+) Xác định góc giữa SC và mặt đáy.

+) Đặt cạnh của hình vuông ở đáy là x, tính SH và HI theo x.

 

+) Sử dụng hệ thức lượng trong tam giác vuông để tìm x.

Cách giải:


 

Giả sử độ dài cạnh hình vuông ở đáy là x. Khi đó, HI = x

12 tháng 7 2019

Đáp án B

Ta có d(K;(SCD))

Ta có 

Có góc giữa SC và đáy là  nên ta có 

Ta có 

14 tháng 10 2018

Đáp án B

d K , S C D = 1 2 d H , S C D = 1 2 H F .

A H = 1 3 A B = 1 3 a ; B H = 2 3 A B = 2 3 a

C H = B H 2 + B C 2 = 13 3 a .

C ó   g ó c   g i ữ a   S C   v à   đ á y   l à   60 °     n ê n   t a   c ó  

S C H ^ = 60 0 ⇒ S H = tan 60 0 . C H = 39 3 a

ta có  1 H F 2 = 1 H E 2 + 1 A H 2 ⇒ H F = 13 4 a

 

4 tháng 7 2017

1 tháng 10 2019

Đáp án B.

Ta có A D / / B C , A D ∉ ( S B C ) , B C ⊂ ( S B C ) ⇒ A D / / ( S B C )  

⇒ d ( A D ; S C ) = d ( A D ; ( S B C ) ) = d ( D ; ( S B C ) ) .

Qua I kẻ đường thẳng song song với AD, cắt CD tại H.

Suy ra  I H ⊥ C D  

Từ C D ⊥ I H , C D ⊥ S I ⇒ C D ⊥ ( S I H ) ⇒ C D ⊥ S H .

Suy ra   ( S C D ) , ( A B C D ) ⏜ = S H , I H ⏜ = S H I ⏜ ⇒ C D ⊥ S H

S I = H I . tan S H I ⏜ = a . tan 60 ° = a 3 ⇒ V S . B C D = 1 2 S A B C D = a 3 3 6 .

Lại có V S . B C D = 1 3 . S ∆ S B C . d ( D ; ( S B C ) ) ⇒ d ( D ; ( S B C ) = 3 V S . B C D S ∆ S B C  (1)

Từ I B = 2 3 A B = 2 3 a ⇒ S B = S I 2 + I B 2 = a 3 2 + 2 a 3 2 = a 31 3 .

Từ B C ⊥ A B , B C ⊥ S I ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S B ⇒ ∆ S B C  vuông tại B.

Suy ra S ∆ S B C = 1 2 S B . S C = 1 2 . a 31 3 . a = a 2 31 6  (2)

Từ (1) và (2), suy ra   d ( D ; ( S B C ) ) = 3 a 3 3 6 a 2 31 6 = 3 a 3 31 = 3 39 31 a

Vậy d ( A D ; S C ) = d ( D ; ( S B C ) ) = 3 93 31 a  

16 tháng 4 2019

24 tháng 11 2019

Chọn đáp án D.

Ta có: 

Kẻ 

Kẻ 

Xét tam giác SHI  vuông tại H:

Xét tam giác SHB vuông tại B: 

10 tháng 8 2018

Đáp án B.

Ta có AD//BC, => AD//(SBC)

=> d(AD;SC) = d(AD;(SBC)) = d(D;(SBC)).

Qua I kẻ đường thẳng song song với AD, cắt CD tại H.

Suy ra IH ⊥ CD

Từ CD ⊥ IH, CD ⊥ SI=> CD ⊥ (SIH)=> CD ⊥ SH

Suy ra 

Lại có 

Từ 

Suy ra 

Từ (1) và (2), suy ra 

Vậy 

17 tháng 5 2022

S A B C D H E K F

Ta có

\(SH\perp\left(ABCD\right);SH\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(ABCD\right)\)

Trong mp (ABCD) từ C dựng đường thẳng vuông góc với BD cắt BD tại F ta có

\(SH\perp\left(ABCD\right);CF\in ABCD\Rightarrow SH\perp CF\)

Mà \(CF\perp BD\)

Ta có \(BD\in\left(SBD\right);SH\in\left(SBD\right)\)

\(\Rightarrow CF\perp\left(SBD\right)\) => CF là khoảng cách từ C đến (SBD)

Trong mp (ABCD) nối CH cắt AD tại E

Ta có BC//AD \(\Rightarrow\dfrac{BC}{ED}=\dfrac{HB}{HD}=\dfrac{HC}{HE}=1\Rightarrow ED=BC=\dfrac{3a}{2}\)

\(\Rightarrow EA=AD-ED=3a-\dfrac{3a}{2}=\dfrac{3a}{2}=BC\)

Mà BC//AE và \(\widehat{ABC}=90^o\)

=> ABCE là hình chữ nhật 

Trong mp (ABCD) từ H dựng đường thẳng vuông góc với CD cắt CD tại K

Xét tg vuông CDE có

\(CD=\sqrt{CE^2+ED^2}=\sqrt{4a^2+\dfrac{9a^2}{4}}=\dfrac{5a}{2}\)

Xét tg vuông ABD có

\(BD=\sqrt{AB^2+AD^2}=\sqrt{4a^2+9a^2}=a\sqrt{13}\)

\(\Rightarrow HB=HD=\dfrac{BD}{2}=\dfrac{a\sqrt{13}}{2}\)

Xét tg vuông CKH và tg vuông CED có \(\widehat{ECD}\) chung

=> tg CKH đồng dạng với tg CED (g.g.g)

\(\Rightarrow\dfrac{CK}{CE}=\dfrac{HC}{CD}\Rightarrow CK=\dfrac{CE.HC}{CD}=\dfrac{2a.a}{\dfrac{5a}{2}}=\dfrac{4a}{5}\)

Xét tg vuông CKH có

\(HK=\sqrt{HC^2-CK^2}=\sqrt{a^2-\dfrac{16a^2}{25}}=\dfrac{3a}{5}\)

Xét tg vuông DKH và tg vuông DFC có \(\widehat{BDC}\) chung

=> tg DKH đồng dạng với tg DFC (g.g.g)

\(\Rightarrow\dfrac{HK}{CF}=\dfrac{HD}{CD}\Rightarrow CF=\dfrac{HK.CD}{HD}=\dfrac{\dfrac{3a}{5}.\dfrac{5a}{2}}{\dfrac{a\sqrt{13}}{2}}=\dfrac{3a\sqrt{13}}{13}\)