Cho log 1 4 y - x - log 4 1 y = 1 y > 0 , y > x Chọn khẳng định đúng trong các khẳng định sau?
A. 3x = 4y
B. x = - 3 4 y
C. x = 3 4 y
D. 3x = -4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)
Vì \(\dfrac{1}{e}\simeq0,368< 1\)
\(\Rightarrow y=log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến trên D = \(\left(0;+\infty\right)\)
Chọn C.
0<1/e<1
=>\(log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến
=>C
a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)
Với \(x = 2\) thì \(y = {\log _2}2 = 1\)
Với \(x = 4\) thì \(y = {\log _2}4 = 2\)
b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.
\(log_xy=log_yx=\frac{1}{log_xy}\Rightarrow\left(log_xy\right)^2=1\Rightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x=\frac{1}{y}\end{matrix}\right.\)
Do \(log_x\left(x-y\right)\) tồn tại \(\Rightarrow x-y\ne0\Rightarrow x\ne y\Rightarrow x=\frac{1}{y}\)
\(log_x\left(x-y\right)=log_y\left(x+1\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+1\right)\)
\(\Leftrightarrow log_x\left[\left(x-\frac{1}{x}\right)\left(x+1\right)\right]=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+1\right)=1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+1\right)=x\Leftrightarrow x^3+x^2-2x-1=0\)
Pt này nghiệm xấu, đề bài có vấn đề
ĐKXĐ: \(x\ne y\)
\(log_xy=\frac{1}{log_xy}\Leftrightarrow log_x^2y=1\Leftrightarrow\left[{}\begin{matrix}log_xy=1\\log_xy=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y\left(l\right)\\x=\frac{1}{y}\end{matrix}\right.\)
\(log_x\left(x-\frac{1}{x}\right)=log_{x^{-1}}\left(x+\frac{1}{x}\right)\Leftrightarrow log_x\left(x-\frac{1}{x}\right)=-log_x\left(x+\frac{1}{x}\right)\)
\(\Leftrightarrow log_x\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=0\Leftrightarrow\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)=1\)
\(\Leftrightarrow x^2-\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-1=0\Rightarrow x^2=\frac{1+\sqrt{5}}{2}\Rightarrow y^2=\frac{1}{x^2}=\frac{-1+\sqrt{5}}{2}\)
\(\Rightarrow x^2+xy+y^2=\frac{1+\sqrt{5}}{2}+1+\frac{-1+\sqrt{5}}{2}=\sqrt{5}+1\)
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)
Xét biểu thức dưới hàm logarit vế phải:
\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)
Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)
\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)
Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)
\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)
\(\Rightarrow VP\le log_216=4\le VT\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(\Rightarrow P=1+0+0+1=2\)
- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai
Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được
Chọn C