K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

Chọn B

9 tháng 12 2018

Chọn B.

18 tháng 6 2018

Đáp án D.

Gọi H là tâm của hình vuông   A B C D ;    S B H ^ = 60 0 ;    H B = a 2 2

Khi đó  là trọng tâm tam giác SAC.

Qua G dựng đường thẳng song song với BD cắt SB;SD lần lượt là E và F.

Do tính chất đối xứng ta có:

V S . A E M F V S . A B C D = V S . A E M V S . A B C = S E S B . S M S C = 2 3 . 1 2 = 1 3 .

 Mặt khác   V A . A B C D = 1 3 S H . S A B C D = 1 3 H B tan 60 0 . a 2 = a 3 6 6 .

Do đó   V S . A E M F = 1 3 . a 3 6 6 = a 3 6 18 .

7 tháng 5 2019

23 tháng 10 2019

Đáp án B

Hướng dẫn giải:

Gọi H là tâm của đáy khi đó  S H ⊥ ( A B C D )

Lại có  S H = H A   tan 60 o = a 6 2

V S . A B C D = 1 3 S H . S A B C D = a 3 6 6

Mặt khác, gọi  G = S H ∩ A M

⇒ G là trọng tâm của tam giác SAC.

Do đó  S G S H = 2 3

Qua G dựng đường thẳng song song với BD cắt SB, SD lần lượt tại P và Q

Khi đó  V S . A B M V S . A B C = S P S B . S M S C = 1 3

từ đó suy ra  V S . A P M Q V S . A B C D = 1 3

Do vậy  V S . A P M Q = a 3 6 18

⇒ 18 V a 3 = 6

1 tháng 4 2017

ình chóp S.ABCD là hình chóp đều nên chân H của đường cao SH chính là tâm của đáy. Mặt phẳng đi qua AM và song song với BD cắt mặt phẳng (SDB) theo một giao song song với BD, hay EF // BD.

Ta dựng giao tuyến EF như sau : Gọi I là giao điểm của AM và SH Qua I ta dựng một đường thẳng song song với BD, đường này cắt SB ở E và cắt SD ở F. Ta có góc SAH= 60°. Tam giác cân SAC có SA = SC và SAC = 60° nên nó là tam giác đều: I là giao điểm của các trung tuyến AM và SH nên:

dap-an-bai-9

13 tháng 11 2019

Giải bài 9 trang 26 sgk Hình học 12 | Để học tốt Toán 12Giải bài 9 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Điều này chứng tỏ SM là đường cao của hình chóp S.AEMF. Vậy thể tích của khối chóp S.AEMF là:

6 tháng 10 2017

Đáp án D

Do  α  qua M song song với mặt đáy nên em kẻ  MN / / AB   N ∈ SB ;

Chú ý: Em nhớ rằng, công thức tính tỉ số thể tích chỉ áp dụng cho khối chóp tam giác. Còn với khối chóp tứ giác, ngũ giác, lục giác,… em cần chia ra thành các khối chóp tam giác và áp dụng công thức.

Công thức giải nhanh:

Cắt khối chóp bởi mặt phẳng song song với đáy: Xét khối chóp  S . A 1 A 2 . .. A n , mặt phẳng (P) song song với mặt đáy cắt cạnh  SA 1  tại m thỏa mãn  SM SA 1 = k . Khi đó (P) chia khối chóp thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V' và khối đa diện ban đầu có thể tích V thì  V ' V = k 3

Nên  ⇒ V SMNPQ V SABCD = ( 1 3 ) 2 = 1 27

8 tháng 11 2017

Đáp án D

Chú ý: Em nhớ rằng, công thức tính tỉ số thể tích chỉ áp dụng cho khối chóp tam giác. Còn với khối chóp tứ giác, ngũ giác, lục giác,… em cần chia ra thành các khối chóp tam giác và áp dụng công thức.

Công thức giải nhanh:

Cắt khối chóp bởi mặt phẳng song song với đáy: Xét khối chóp  S . A 1 A 2 . . . . . A n  , mặt phẳng (P) song song với mặt đáy cắt cạnh S A 1 tại m thỏa mãn . Khi đó (P) chia khối chóp thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V' và khối đa diện ban đầu có thể tích V thì  V ' V = k 3

Nên  ⇒ V S . M N P Q V S . A B C D = 1 3 2 = 1 27

27 tháng 12 2019

Đáp án D

Phương pháp giải:

Dùng định lí Thalet, định lý Menelaus và phương pháp tỉ số thể tích để tính thể tích khối chóp theo tham số k.

Khảo sát hàm số chứa biến k để tìm giá trị lớn nhất – giá trị nhỏ nhất

Lời giải:

Gọi O là tâm của hình bình hành ABCD và  I = S O ∩ A M .

Ba điểm M,A,I thẳng hàng nên áp dụng định lý Menelaus cho tam giác SOC ta có:  S M M C . C A A O . O I I S = 1 ⇒ O I S I = 1 = k 2 .