K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=8cm

AH=4,8cm

BH=3,6cm

6 tháng 5 2021

a) Xét ΔABC vuông tại A ta có:
\(BC^2\)\(AB^2+AC^2\)
\(BC^2\) = \(8^2+15^2\)
BC = 17 (cm)
Xét ΔHBA và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\) = \(90^0\)
\(\widehat{ABH}=\widehat{ABC}\) (góc chung)
=> ΔHBA~ΔABC (g-g)
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}=\dfrac{AH}{AC}\) (tsdd)
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(AB^2=BH.BC\)
=> \(8^2=17.BH\)
=> BH = \(\dfrac{64}{17}\) (cm)
Lại có: \(\dfrac{AB}{BC}=\dfrac{AH}{AC}\) (cmt)
=> \(\dfrac{8}{17}=\dfrac{AH}{15}\)
=> AH = \(\dfrac{120}{17}\) (cm)
b) Xét tg AMNH ta có:
\(\widehat{MAN}=90^0\) (ΔABC vuông tại A)
\(\widehat{AMH}=90^0\) (M là hình chiếu của H lên AB)
\(\widehat{ANH}=90^0\) (N là hình chiếu của H lên AC)
=> Tg AMNH là hcn
Ta có: \(\left\{{}\begin{matrix}AH=\dfrac{120}{17}\\AH=MN\end{matrix}\right.\)
=> MN = \(\dfrac{120}{7}\)
c) Xét ΔAMH và ΔAHB ta có:
\(\widehat{MAH}=\widehat{BAH}\) (góc chung)
\(\widehat{AMH}=\widehat{AHB}\) = \(90^0\)
=> ΔAMH ~ ΔAHB (g-g)
=> \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\) (tsdd)
=> \(AH^2=AM.AB\)
Tương tự như trên xét ΔANH và ΔAHC
=> \(\dfrac{AN}{AH}=\dfrac{AH}{AC}\) (tsdd)
=> \(AH^2=AN.AC\)
=> đpcm (=\(AH^2\))

22 tháng 6 2023

 

  1. a) Ta có:

    • Diện tích tam giác ABC là S = 1/2 * AB * AC = 1/2 * 3cm * 4cm = 6cm^2.
    • Vì AD là đường cao của tam giác ABC nên diện tích tam giác ABC cũng bằng 1/2 * AB * CD, tức là: S = 1/2 * AB * CD = 3CD.
      Từ đó suy ra: CD = 2cm.

    b) Gọi E là hình chiếu vuông góc của D trên BC. Ta có:

    • Tam giác ADE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác BDE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AC.
      Do đó, ta có:

    • AI/AB = DE/BC (vì tam giác ADE và tam giác ABC đồng dạng)

    • DE = AD - AE = AD - CD = AD - 2 (vì tam giác ADE vuông tại E và CD là hình chiếu của AD trên BC)

    • BC = AB + AC = 3 + 4 = 7
      Từ đó suy ra: AI/AB = (AD - 2)/7

    Vậy, ta có: AI*AB = (AD - 2)AB/7 = ADAB/7 - 2AB/7 = AD^2/3 - 2/7.

    c) Gọi F là hình chiếu vuông góc của D trên AB. Ta có:

    • Tam giác ADF và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác CDF và tam giác ABC đồng dạng với tỉ số đồng dạng CD/AC.
      Do đó, ta có:

    • AI/AB = DF/AF (vì tam giác ADF và tam giác ABC đồng dạng)

    • AK/AC = CF/AF (vì tam giác CDF và tam giác ABC đồng dạng)

    • DF + CF = CD = 2

    • AF = AB - BF = AB - AK = 3 - AK (vì BF là hình chiếu của B trên AC và AK là hình chiếu của D trên AC)

    Từ đó suy ra: AI/AB = DF/(DF + CF) = DF/2 = (AD^2 - AF^2)/(2AD^2) = (AD^2 - (AB - AK)^2)/(2AD^2) = (2AK*AC - AK^2)/(2AD^2) = AK/AD - AK^2/(2AD^2).

    Từ b) và c), ta có: AIAB = AD^2/3 - 2/7 = AKAC*(1 - AK^2/(2AD^2)).

    d) Gọi H là hình chiếu vuông góc của I trên BC. Ta có:

    • Tam giác ADH và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

    • Tam giác IDH và tam giác ABC đồng dạng với tỉ số đồng dạng AI/AC.
      Do đó, ta có:

    • ID/AI = DH/AB (vì tam giác IDH và tam giác ABC đồng dạng)

    • DH = CD - CH = 2 - CI (vì tam giác ADH vuông tại H và CI là hình chiếu của I trên BC)

    • AB = 3, AC = 4, BC = 7

    Từ đó suy ra: ID/AI = (CD - CH)/AB = (2 - CI)/3.

    Do đó, ta có: ID/AI = (2 - CI)/3 = (2 - AK)/4 (vì AIAB = AKAC từ c))

    Từ đó suy ra: ID = (2AI - 3AK)/4.

    Vậy, ta có: ID/AI = (2AI - 3AK)/(4AI) = 1 - 3AK/(2AI) = 1 - DH

    18:22
  2.  
 
20 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)

b: ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot IB=HI^2\)

ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot KC=HK^2\)

Xét tứ giác AIHK có 

\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

=>AIHK là hình chữ nhật

=>\(HI^2+HK^2=IK^2=AH^2\)

=>\(AI\cdot IB+AK\cdot KC=AH^2=7.2^2=51.84\)

c: Vì AIHK là hình chữ nhật

nên A,I,H,K cùng thuộc đường tròn đường kính AH

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

b: BC=10cm

AH=4,8cm

BH=3,6cm

CH=6,4cm

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

=>ΔAHB=ΔAHC

b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H có

AI chung

AK=AH

=>ΔAKI=ΔAHI

=>góc KAI=góc HAI

=>AI là phân giác của góc BAC

c; AK=8cm nên AH=8cm

AI=căn 8^2+6^2=10cm