Cho hàm số y = x + 2 x 2 + 1 có đồ thị (C). Mệnh đề nào dưới đây đúng?
A. (C) cắt trục hoành tại ba điểm.
B. (C)cắt trục hoành tại hai điểm.
C. (C)cắt trục hoành tại một điểm.
D. (C)không cắt trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Dựa vào đồ thị của hàm số y = f '(x), em suy ra được bảng biến thiên như sau:
Chọn A
Đồ thị của hàm số liên tục trên các đoạn và , lại có là một nguyên hàm của .
Do đó diện tích của hình phẳng giới hạn bởi các đường:
là:
.
Vì
Tương tự: diện tích của hình phẳng
giới hạn bởi các đường: là:
.
.
Mặt khác, dựa vào hình vẽ ta có: .
Từ (1), (2) và (3) ta chọn đáp án A.
( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )
Đáp án C
Phương pháp:
+) đồng biến trên (a;b)
+) nghịch biến trên (a;b)
Cách giải:
Quan sát đồ thị của hàm số y = f’(x), ta thấy:
+) đồng biến trên (a;b) => f(a) > f(b)
+) nghịch biến trên (b;c) => f(b)<f(c)
Như vậy, f(a)>f(b), f(c)>f(b)
Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn
Đáp án B.
Phương pháp : Ứng dụng tích phân để tính diện tích hình phẳng.
Cách giải:
Đáp án C
Trên khoảng ( a, b )ta có: f ' (x)< 0 nên hàm số nghịch biến trên khoảng (a, b)
Ta có f (a) > f (b)
Tương tự trên khoảng ( b,c ) có f ' ( x ) > 0 nên hàm số đồng biến trên ( b,c )suy ra f (c) > f (b)
(Đến đây rõ ràng ra suy ra được 4 đúng và 1 trong 2 ý (1) và (2) có 1 ý đúng ta sẽ suy ra đáp án cần chọn là C)
Chặt chẽ hơn: Dựa vào đồ thị ta thấy
Do đó f (c) > f (a) > f (b)
Đáp án C
Ta có x + 2 x 2 + 1 = 0 ⇔ x = − 2
Suy ra (C) cắt trục hoành tại 1 điểm