K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

Đáp án là B

23 tháng 6 2017

Gọi

 phương trình tiếp tuyến của (C) tại M là 

Phương trình hoành độ giao điểm:

Yêu cầu bài toán tương đương với (1) có hai nghiệm phân biệt khác 

Vậy có tất cả 5 điểm có toạ độ nguyên thoả mãn.

Chọn đáp án A.

NV
24 tháng 12 2020

\(y'=\dfrac{1}{2}x^3-\dfrac{7}{2}x\)

Chỉ cần để ý 1 lý thuyết:

Đường thẳng đi qua 2 điểm \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) sẽ có hệ số góc \(k=\dfrac{y_1-y_2}{x_1-x_2}\)

Do đó ta có hệ số góc của đường thẳng MN là \(k=3\)

\(\Rightarrow\dfrac{1}{2}x^3-\dfrac{7}{2}x=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\) (sao lắm nghiệm vậy trời)

Biết hoành độ 3 tiếp điểm, bạn viết 3 pt tiếp tuyến rồi xét pt hoành độ với (C) coi cái nào có 4 nghiệm (trong đó có 1 nghiệm kép) thì nhận

25 tháng 12 2020

undefined

23 tháng 10 2019

+ Đạo hàm : y’ = 4/3.x3-28/3. x

y 2 - y 1 = 8 ( x 2 - x 1 ) ⇔ y 2 - y 1 x 2 - x 1 = 8

Vậy tiếp tuyến của (C)  tại A  có hệ số góc bằng 8.

 + Xét phương trình y' = 8

⇔ 4 3 x 3 - 28 3 x = 8 ⇔ 4 x 3 - 28 x - 24 = 0

+) Với x= 3 thì A( 3; -15) nên phương trình tiếp tuyến của (C)  tại A là y = 8(x-3) - 15 ( d 1 )

Phương trình hoành độ giao điểm của (C)  và ( d 1 ) là

 

8 ( x - 3 ) - 15 = 1 3 x 4 - 14 3 x 2 ⇔ ( x - 3 ) 2 ( x 2 + 6 x + 13 ) = 0 ⇔ x = 3 .

Vậy  A(3; -15)  loại.

+) Với x= -2 thì A(-2; -40/3) . phương trình tiếp tuyến của (C)  tại A là y = 8(x+2) - 40/3 ( d 2 )

Phương trình hoành độ giao điểm của ( C)  và ( d 2 )  là

8 ( x + 2 ) - 40 3 = 1 3 x 4 - 14 3 x 2 ⇔ ( x + 2 ) 2 ( x 2 - 4 x - 2 ) = 0

Vậy  A( -2; -40/3) thỏa mãn.

+) Với  x= -1 thì A( -2; -13/ 3)  nên  phương trình tiếp tuyến của C tại A là

y = 8(x+1) - 13/3 (d3)

Phương trình hoành độ giao điểm của C  và (d3)  là: 

8 ( x + 1 ) - 13 3 = 1 3 x 4 - 14 3 x 2 ⇔ ( x + 2 ) 2 ( x 2 - 2 x - 11 ) = 0

Vậy A( -1; -13/3) thỏa mãn.

Vậy có tất cả 2 điểm A thỏa mãn yêu cầu bài toán.

Chọn B.

20 tháng 5 2018

Đáp án A

Gọi M a ; a 3 − 3 a suy ra PTTT tại M là:  y = 3 a 2 − 3 x − a + a 3 − 3 a d

Ta có:

  d ∩ Ox = B − a 3 + 3 a 3 a 2 − 3 + a ; 0

Phương trình hoành độ giao điểm của d và C là : 

x 3 − 3 x = 3 a 2 − 3 x − a + a 3 − 3 a

⇔ x − a x 2 + ax + a 2 − 3 x − a = 3 a 2 − 3 x − a ⇔ x − a x 2 + a   x − 2 a 2 = 0 ⇔ x − a 2 x + 2 a = 0 ⇔ x = − 2 a ⇒ A − 2 a ; − 8 a 3 + 6 a

Do A, M, B luôn thuộc tiếp tuyến d nên để M là trung điểm của AB thì: 

2 y M = y A + y B

⇔ 2 a 3 − 6 a = − 8 a 3 + 6 a ⇔ 10 a 3 = 12 a ⇔ a = 0 a = ± 6 5

Do M ≠ 0 ⇒ a ≠ 0 ⇒ a = ± 6 5 .

Vậy có 2 điểm M thỏa mãn yêu cầu.

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

NV
11 tháng 8 2021

Phương trình hoành độ giao điểm: \(x^4-5x^2-m+4=0\)

Đặt \(x^2=t\Rightarrow t^2-5t-m+4=0\) (1)

Gọi 4 hoành độ giao điểm là \(x_1< x_2< x_3< x_4\) và \(t_1< t_2\) là 2 nghiệm dương phân biệt của (1) thì: \(\left\{{}\begin{matrix}x_1=-\sqrt{t_2}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_1}\\x_4=-\sqrt{t_2}\end{matrix}\right.\)

Do 4 điểm cách đều \(\Rightarrow x_2-x_1=x_3-x_2\Rightarrow x_1+x_3=2x_2\)

\(\Rightarrow-\sqrt{t_2}+\sqrt{t_1}=-2\sqrt{t_1}\) \(\Rightarrow3\sqrt{t_1}=\sqrt{t_2}\Rightarrow t_2=9t_1\)

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=5\\t_2=9t_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{1}{2}\\t_2=\dfrac{9}{2}\end{matrix}\right.\) 

\(\Rightarrow-m+4=t_1t_2=\dfrac{9}{4}\)

\(\Rightarrow m=\dfrac{7}{4}\)

23 tháng 8 2017

Gọi với  là điểm cần tìm.

Gọi  tiếp tuyến của (C)  tại M ta có phương trình.

 

 

Gọi 

Khi đó tạo với hai trục tọa độ tam  giác OAB  có trọng tâm là

 

Do G  thuộc đường thẳng  4x+y=0 nên 

(vì A; B không trùng O nên   ) 

Vì x0>-1 nên chỉ chọn 

Chọn A.

29 tháng 7 2018

Đáp án A

Ta có y ' = 3 x 2 − 3 m = 3 x 2 − m  

Hàm số có 2 điểm cực trị ⇔ y ' = 0  có 2 nghiệm phân biệt ⇒ m > 0 *  

Khi đó B m ; 1 − 2 m m , C − m ; 1 + 2 m m ⇒ A B → = 2 − m ; 2 + 2 m m A B → = 2 + m ; 2 − 2 m m  

Tam giác ABC cân tại A

⇒ A B = A C ⇔ 2 − m 2 + 2 + 2 m m 2 = 2 + m 2 + 2 − 2 m m 2  

⇔ − 8 m + 16 m m = 0 ⇔ m 2 m − 1 = 0 ⇔ m = 0 m = 1 2  

Kết hợp điều kiện * ⇒ m = 1 2