K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Chọn A

5 tháng 9 2019

+ Số cách xếp 8 học sinh nói trên ngồi xung quanh một bạn tròn là 7 !.

+ Đếm số cách xếp 8 học sinh ngồi xung quanh một bàn tròn mà hai học sinh Hải và Liên ngồi cạnh nhau:

Trước tiên, số cách xếp 7 học sinh (trừ bạn Hải sẽ xếp sau) ngồi xung quanh một bàn tròn là 6 !

Khi đó có 2 cách xếp chỗ ngồi cho bạn Hải (ở bên trái hoặc bên phải bạn Liên).

Theo quy tắc nhân, sẽ có 6!.2 cách xếp 8 bạn ngồi xung quanh một bàn tròn mà hai bạn Hải và Liên ngồi cạnh nhau.

Vậy số cách xếp chỗ ngồi sao cho Hải và Liên không ngồi cạnh nhau là: 7! – 6!.2 =6!.5.

Chọn C.

26 tháng 9 2022

Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.

Chọn B và C là hai bạn không quen nhau trong nhóm này.

Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.

Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.

28 tháng 9 2021

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

~ Chúc bn hok tốt ~

Giải thích các bước giải:

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

17 tháng 10 2019

Chọn C

25 tháng 11 2016

bạn cung song ngư hả.kb vs mik nha

25 tháng 11 2016

mày đặt câu hỏi thế thì mày về mà hỏi bố mày chưa chắc đã trả lời đc 

2 tháng 9 2019

Chọn A

Gọi A là biến cố: Xếp hai học sinh A, B ngồi ở hai bàn xếp cạnh nhau.

Số cách xếp ngẫu nhiên  học sinh vào 36 cái bàn là 36!, 

Ta tìm số cách xếp thuận lợi cho biến cố :

     - Chọn 1 hàng hoặc 1 cột có C 12 1  cách;

- Mỗi hàng hoặc cột đều có 6 bàn nên có 5 cặp bàn xếp kề nhau, chọn lấy 1 trong 5 cặp bàn cạnh nhau trong hàng hoặc cột vừa chọn ra có C 5 1  cách;

- Xếp A và B vào cặp bàn vừa chọn có 2! cách;

- Xếp 34 học sinh còn lại có 34! cách.

Vậy tổng số cách xếp thoả mãn là: 

Vậy xác suất cần tính: