Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp : Sử dụng quy tắc đếm và hoán vị.
Cách giải : Xếp vị trí ngồi của 3 câu lạc bộ có 2! = 2 cách xếp.
Hoán vị các thành viên trong mỗi câu lạc bộ có 3!5!7! = 3628800
Vậy có 2.3628800 = 7257600 cách xếp chỗ ngồi thỏa mãn.
Đáp án A.
Đặt Ω là không gian mẫu. Ta có n Ω = 2 8 = 256 .
Gọi A là biến cố “Không có hai người nào ngồi cạnh nhau phải đứng dậy”.
- TH1: Không có ai tung được mặt ngửa. Trường hợp này có 1 khả năng xảy ra.
- TH2: Chỉ có 1 người tung được mặt ngửa. Trường hợp này có 8 khả năng xảy ra.
- TH3: Có 2 người tung được mặt ngửa nhưng không ngồi cạnh nhau: Có 8.5 2 = 20 khả năng xảy ra (do mỗi người trong vòng tròn thì có 5 người không ngồi cạnh).
- TH4: Có 3 người tung được mặt ngửa nhưng không có 2 người nào trong 3 người này ngồi cạnh nhau. Trường hợp này có C 8 3 − 8 − 8.4 = 16 khả năng xảy ra.
Thật vậy:
+ Có C 8 3 cách chọn 3 người trong số 8 người.
+ Có 8 khả năng cả ba người này ngồi cạnh nhau.
+ Nếu chỉ có 2 người ngồi cạnh nhau. Có 8 cách chọn ra một người, với mỗi cách chọn ra một người có 4 cách chọn ra hai người ngồi cạnh nhau và không ngồi cạnh người đầu tiên (độc giả vẽ hình để rõ hơn). Vậy có 8.4 khả năng.
- TH5: Có 4 người tung được mặt ngửa nhưng không có 2 người nào trong 4 người này ngồi cạnh nhau. Trường hợp này có 2 khả năng xảy ra.
Suy ra
n A = 1 + 8 + 20 + 16 + 2 = 47 ⇒ P A = 47 256
Chọn A
Số cách để xếp người vào bàn tròn là : 7!=5040(cách)
Để xếp cho hai nữ không ngồi cạnh nhau, trước tiên ta xếp nam trước: 4!=24(cách)
Giữa nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống là:
Vậy xác suất để xếp cho hai nữ không ngồi cạnh nhau là:
• Giai đoạn 1: Chọn 10 người từ 20 người xếp vào bàn A nên có C 20 10 cách chọn người. Tiếp theo là 10 người vừa chọn này có 9! cách chọn chỗ ngồi. Vậy giai đoạn 1 có C 20 10 .9! cách.
• Giai đoạn 2: 10 người còn lại xếp vào bàn B, 10 người này có 9! cách chọn chỗ ngồi. Vậy giai đoạn 2 có 9! cách.
Vậy có tất cả C 20 10 . 9 ! . 9 ! cách thỏa mãn bài toán. Chọn B.
Chọn C