K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Chọn đáp án D

23 tháng 3 2019

Chọn A.

Dễ thấy un là cấp số nhân với q = 10

Ta có: u8 = 107u1; u10 = 109u1

Do đó PT 

Giải PT ta được logu1 = -17 u1 = 10-17 u2018 = 102017 u1 = 102000 

26 tháng 3 2019

13 tháng 9 2017

Đáp án B.

Đặt  t = 2 + log   u 1 - 2 log   u 10 ≥ 0

⇔ 2 log   u 1 - 2 log   u 10 = t 2 - 2 , 

khi đó giả thiết trở thành:

log   u 1 - 2 log   u 10 + 2 + log   u 1 - 2 log   u 10 = 0

⇔ t 2 + t - 2 = 0  

<=> t = 1 hoặc t = -2

⇒ log   u 1 - 2 log   u 10 = - 1

⇔ log   u 1 + 1 = 2 log   u 10

⇔ log 10 u 1 = log u 10 2 ⇔ 10 u 1 = u 10 2   ( 1 )

Mà un+1 = 2un => un là cấp số nhân với công bội q = 2

=> u10 = 29 u1 (2)

Từ (1), (2) suy ra

10 u 1 = 9 9 u 1 2 ⇔ 2 18 u 1 2 = 10 u 1 ⇔ u 1 = 10 2 18

⇒ u n = 2 n - 1 . 10 2 18 = 2 n . 10 2 19 .

Do đó  u n > 5 100 ⇔ 2 n . 10 2 19 > 5 100

⇔ n > log 2 5 100 . 2 19 10 = - log 2 10 + 100 log 2 5 + 19 ≈ 247 , 87

Vậy giá trị n nhỏ nhất thỏa mãn là n = 248.

7 tháng 1 2019

Đáp án C

Phương pháp : Áp dụng công thức : 

tanα.cotα = 1ó tanα(tan900 – α) = 1

Cách giải : Ta có : >P = tan10.tan20.tan30…tan890

óP=(tan10.tan890).(tan20.tan880).(tan30.tan870)…tan450

óP=(tan10.cot10).(tan20.cot20).(tan30.cot30)…..(tan440.cot440).tan450

óP=1.1.1…..1=1 =>logP = log1 = 0

17 tháng 5 2017

Đáp án C

15 tháng 4 2019

Đáp án C.

24 tháng 11 2019

Đáp án là C

8 tháng 2 2022

Ủa lớp 9 học lim rồi á?

NV
30 tháng 12 2020

\(u_n=2u_{n-1}+3n-1\)

\(\Leftrightarrow u_n+3n+5=2\left(u_{n-1}+3\left(n-1\right)+5\right)\)

Đặt \(u_n+3n+5=v_n\Rightarrow\left\{{}\begin{matrix}v_1=10\\v_n=2v_{n-1}\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội 2

\(\Rightarrow v_n=10.2^{n-1}\Rightarrow u_n+3n+5=10.2^{n-1}\)

\(\Leftrightarrow u_n=10.2^{n-1}-3n-5\)

\(\Rightarrow u_{2019}=10.2^{2018}+3.2019-1=...\)