rút gọn:
B=(x-y+m)-(-y+m-t)-(x-t)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(B=\frac{16-\left(x+1\right)^2}{x^2+10x+25}\)
\(B=\frac{\left(4-x-1\right)\left(4+x+1\right)}{\left(x+5\right)^2}\)
\(B=\frac{\left(3-x\right)\left(x+5\right)}{\left(x+5\right)^2}\)
\(B=\frac{3-x}{x+5}\)
# Học tốt #
Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z
A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3
=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)
=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)
\(M=(-\dfrac{7}{3})^2(x^3y)^2(-2020x^{15}y^{17}2^{19}t^{1000})^0\)
\(M=\dfrac{49}{9}x^2y^2.x^6y^2.1\)
\(M=\dfrac{49}{9}(x^2x^6).(y^2y^2)\)
\(M=\dfrac{49}{9}x^8y^4\)
\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{x+z}{x+y+z+t}+\frac{y+t}{x+y+z+t}\)
\(\Rightarrow M< \frac{\left(x+t\right)+\left(y+z\right)+\left(x+z\right)+\left(y+t\right)}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\Rightarrow M< 2\)
\(\Rightarrow M^{10}< 2^{10}\Rightarrow M^{10}< 1024\Rightarrow M^{10}< 1025\)
Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.
Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.
Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)
Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.
Ta chứng minh tính chất \(\frac{a}{b}< 1\) suy ra \(\frac{a+m}{b+m}>\frac{a}{b}\)
Ta có \(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+m}{b+m}=\frac{b-a}{b+m}\)
Vì \(\frac{b-a}{b}>\frac{b-a}{b+m}=>\frac{a}{b}< \frac{a+m}{b+m}\)
Áp dụng thính chất trên ta có
\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+t+z}+\frac{z+x}{y+z+t+x}+\frac{t+y}{x+z+t+y}\)
=> M < 2 => M10 <210=1024 <1025
Vậy M10 <1025
B=x-y+m+y-m+t-x+t
=(y-y)+(m-m)+2t+2x
= 2(t+x)