
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/\(\left(x-y-z\right)-\left(2x+y+z\right)+\)\(\left(2z-2y\right)=x-y-z-2x-y-z+2z-2y\)
\(\left(x-2x\right)+\left(-y-y-2y\right)+\left(-z-z+2z\right)=-x-4y\)
2/\(\left(m-n-p\right)-\left(-m+n-p\right)-\left(n+m\right)=m-n-p+m-n+p-n-m\)
\(=\left(m+m-m\right)+\left(-n-n-n\right)+\left(-p+p\right)=-m-3n\)
3/\(\left(2a+b+c\right)-\left(b+2a+c\right)-\left(2c+b\right)=2a+b+c-b-2a-c-2c-b\)
\(=\left(2a-2a\right)+\left(b-b-b\right)+\left(c-c-2c\right)=-b-2c\)

1A
x.y=-11 suy ra x,y∈ Ư (-11) suy ra x ,y sẽ có 2 trường hợp là x=1,y=11 hoặc x=-1,y=-11
Bài 2:
a: \(\dfrac{4\cdot7}{9\cdot32}=\dfrac{4}{32}\cdot\dfrac{7}{9}=\dfrac{1}{8}\cdot\dfrac{7}{9}=\dfrac{7}{72}\)
b: \(\dfrac{3\cdot21}{14\cdot15}=\dfrac{63}{210}=\dfrac{3}{10}\)
c: \(\dfrac{9\cdot6-9\cdot3}{18}=\dfrac{9\cdot3}{18}=\dfrac{3}{2}\)
d: \(\dfrac{17\cdot15-17}{3-20}=\dfrac{17\cdot14}{-17}=-14\)
e: \(=\dfrac{26\cdot5}{26\cdot35}=\dfrac{5}{35}=\dfrac{1}{7}\)
f: \(=\dfrac{49\left(1+7\right)}{49}=8\)

\(2a,A=\left(-a-b+c\right)-\left(-a-b-c\right)\)
\(=-a-b+c-a+b+c\)
\(=\left(-a-a\right)+\left(-b+b\right)+\left(c+c\right)\)
\(=-2a+0+2c\)
\(=2c-2a\)
\(b,\) Thay \(a=2018;c=-2\) vào biểu thức trên ta được:
\(2.\left(-2\right)-2.2018=-4-4036=-4040\)
Vậy ...........
\(1,xy+y+x=4\)
\(\Leftrightarrow xy+y+x+1=5\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=5\)
\(\Rightarrow\left(x+1\right),\left(y+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(x+1;y+1\right)\in\left\{\left(5;1\right);\left(1;5\right);\left(-5;-1\right);\left(-1;-5\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(4;0\right);\left(0;4\right);\left(-6;-2\right);\left(-2;-6\right)\right\}\)
\(2a,A=\left(-a-b+c\right)-\left(-a-b-c\right)\)
\(=-a-b+c+a+b+c\)
\(=2c\)
\(b,Thay:a=2018;b=-1;c=-2\) vào biểu thức trên ta được:
\(A=2.\left(-2\right)=-4\)
Vậy............................

\(\)Vì \(UCLN\left(a;b\right)=15\)
\(\Rightarrow\left\{{}\begin{matrix}a=15m\\b=15n\end{matrix}\right.\)
\(\Rightarrow\dfrac{15m}{15n}=\dfrac{60}{108}\)
\(\Rightarrow\dfrac{m}{n}=\dfrac{60}{108}\)
\(\Rightarrow108m=60n\)
\(\Rightarrow9m=5n\)
\(\Rightarrow\left\{{}\begin{matrix}a=15.9=135\\b=15.5=75\end{matrix}\right.\)

a, \(\left(a+b\right)-\left(-c+a+b\right)\)
\(=a+b+c-a-b\)
\(=\left(a-a\right)+\left(b-b\right)+c\)
\(=c\)
b, \(-\left(x+y\right)+\left(-z+x+y\right)\)
\(=-x-y+\left(-z\right)+x+y\)
\(=\left(-x+x\right)+\left(-y+y\right)+\left(-z\right)\)
\(=0+0+\left(-z\right)\)
\(=-z\)
c, \(\left(m-n+p\right)+\left(-m+n+p\right)\)
\(=m-n+p+\left(-m\right)+n+p\)
\(=\left(m-m\right)+\left(-n+n\right)+\left(p+p\right)\)
\(=0+0+2p\)
\(=2p\)
P/s : lần sau cs tag t thì tránh xa con ng` đó ra :)

Cho x, y là các số nguyên thoả mãn \(\left(1\right)\)
Theo bài ra ra thấy:
\(159\) và \(3x\) đều \(⋮\) \(3\)
\(\Rightarrow17y⋮3\Rightarrow y⋮3\)
Cho y = 3t (\(t\in Z\))
Thay vào \(\left(1\right)\), ta được:
\(3x+17.3t=159\)
\(\Leftrightarrow x+17t=53\)
\(\Rightarrow x=53-17t\)
\(\Rightarrow\left\{{}\begin{matrix}x=53-17t\\y=3t\end{matrix}\right.\left(t\in Z\right)\)
Vậy 1 có vô số \(\left(x,y\right)\in Z\) được tạo ra bởi:
\(\Rightarrow\left\{{}\begin{matrix}x=53-17t\\y=3t\end{matrix}\right.\left(t\in Z\right)\)
B=x-y+m+y-m+t-x+t
=(y-y)+(m-m)+2t+2x
= 2(t+x)