K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

b ơi có ghi nhầm đề o? x+1 sao chia hết cho x^2+1 được đâu hay x^2+1 chia hết cho x+1? 

11 tháng 12 2022

giú mới ạ mái em noppj rồikhocroi

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

14 tháng 6 2023

a. \(A=\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{4x+2}{x^2-1}\)

\(A=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}+\dfrac{4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{\left(x+1\right)-\left(x-1\right)+4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{x+1-x+1+4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)

b) Ta có: \(A=\dfrac{4}{x-1}=\dfrac{4}{2015}\) (ĐK: \(x\ne\pm1\) )

\(\Leftrightarrow8060=4\left(x-1\right)\)

\(\Leftrightarrow8060=4x-4\)

\(\Leftrightarrow8064=4x\)

\(\Leftrightarrow x=\dfrac{8064}{4}=2016\left(tm\right)\)

c) Ta có: \(\dfrac{4}{x-1}\left(x\ne1\right)\)

Để \(\dfrac{4}{x-1}\) nhận giá trị nguyên thì \(4:\left(x-1\right)\Leftrightarrow x-1\in\text{Ư}\left(4\right)=\left\{1;4;2\right\}\)

Vậy với x ∈ {2; 5; 3; 0; -1; -3} thì biểu thức \(\dfrac{4}{x-1}\) nhận giá trị nguyên

d) Thay \(x=-\dfrac{1}{2}\) vào biểu thức A ta được:

\(\dfrac{4}{-\dfrac{1}{2}-1}=-3\)

Vậy biểu thức A có giá trị -3 tại \(x=-\dfrac{1}{2}\)

NV
28 tháng 4 2021

Chắc là \(M=\dfrac{4x+1}{x^2+3}\) đúng không nhỉ?

\(M=\dfrac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\dfrac{\left(x+2\right)^2}{x^2+3}\ge-1\)

\(M=\dfrac{12x+3}{3\left(x^2+3\right)}=\dfrac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\dfrac{4}{3}-\dfrac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\dfrac{4}{3}\)

\(\Rightarrow-1\le M\le\dfrac{4}{3}\)

Mà M nguyên \(\Rightarrow M=\left\{-1;0;1\right\}\)

- Với \(M=-1\Rightarrow\dfrac{4x+1}{x^2+3}=-1\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)

- Với \(M=0\Rightarrow\dfrac{4x+1}{x^2+3}=0\Rightarrow4x+1=0\Rightarrow x=-\dfrac{1}{4}\)

- Với \(M=1\Rightarrow\dfrac{4x+1}{x^2+3}=1\Leftrightarrow x^2-4x+2=0\Rightarrow x=2\pm\sqrt{2}\)

Vậy \(x=\left\{-2;-\dfrac{1}{4};2-\sqrt{2};2+\sqrt{2}\right\}\) thì M nguyên

24 tháng 2 2017

a: \(P=\dfrac{x^2-x-18+2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x}{x+3}\)

b: P=2/3

=>x/(x+3)=2/3

=>3x=2x+6

=>x=6(nhận)

c: P nguyên

=>x chia hết cho x+3

=>x+3-3 chia hết cho x+3

=>x+3 thuộc {1;-1;2;-2}

=>x thuộc {-2;-4;-1;-5}

27 tháng 9 2018

c) Để A nhận giá trị nguyên khi và chỉ khi:

Kết hợp với điều kiện, tập hợp các giá trị của x nguyên để A nguyên là: {0; 2; -2; 4}.