K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

\(M=\frac{x^2+x+1}{x^2+2x+1}=\frac{\left(x+1\right)^2-x}{\left(x+1\right)^2}\)

Đặt y=x+1 =>y-1=x ta được: 

\(M=\frac{y^2-y+1}{y^2}=\frac{\frac{y^2-y+1}{y^2}}{\frac{y^2}{y^2}}=1-\frac{1}{y}+\frac{1}{y^2}\)

\(=\left(\frac{1}{2}-\frac{1}{y}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là 3/4 tại 1/2-1/y=0

=>y=2

=>x=y-1=1

 

9 tháng 1 2016

giải đầy đủ giùm 1 tick

 

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

11 tháng 3 2018

Bạn ơi hình như đề cho đk x ko phù hợp

Vì ta sẽ biến đổi đc M = (x+1)^2/x+1 - 4

Vậy ko thể đánh giá để tìm đc GTNN của M bởi (x+1)^2 >= 0 nhưng x+1 chưa chắc đã dương , với -1 < x < 0 thì x+1 < 0

Bạn xem lại đề đi nha 

11 tháng 3 2018

GIÚP MÌNH VỚI Ạ!!!

11 tháng 3 2018

Ta có :        \(M=\frac{x^2+2x+5}{x+1}\)

            \(\Rightarrow M=\frac{x^2+x+x+5}{x+1}\)

            \(\Rightarrow M=\frac{x.\left(x+1\right)+x+5}{x+1}\)    

                

28 tháng 2 2019

đoán xem

14 tháng 7 2018

a) \(M=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1\)\(-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}\)\(+\frac{\sqrt{x}-2x-\sqrt{x}}{\sqrt{x}}\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)

\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)