K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Ta có : \(\frac{a}{b}=\frac{c}{d}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

=> \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

9 tháng 1 2016

 Đề thiếu trầm trọng 

5 tháng 12 2023

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

5 tháng 12 2023

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)

 

      

 

26 tháng 9 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{5a}{5c}=\frac{3b}{3d}=>\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(=>\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(DPCM\right)\)

26 tháng 9 2015

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3b}{3d}=\frac{5a}{5c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{3b}{3d}=\frac{5a}{5c}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

=> \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (điều phải chứng minh)

3 tháng 1 2018

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

28 tháng 3 2019

Ta có

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(5a+3b\right)\left(5c-3d\right)=\left(5c+3d\right)\left(5a-3b\right)\)

\(\Rightarrow25ac-15ad+15bc-9bd-25ac+15bc-15ad+9bd=0\)

\(\Rightarrow-30ad+30bc=0\)

\(\Rightarrow-30ad=-30bc\Rightarrow ad=bc\)

hay \(\frac{a}{b}=\frac{c}{d}\) ( ĐPCM)

\(\)

28 tháng 3 2019

Ta có

5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)

⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0

⇒−30ad+30bc=0⇒−30ad+30bc=0

⇒−30ad=−30bc⇒ad=bc⇒−30ad=−30bc⇒ad=bc

hay ab=cdab=cd ( ĐPCM)

8 tháng 7 2017

từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d

áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất ta dc

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đcpm)

24 tháng 8 2017

Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. lấy điểm B bất kì thuộc đường thằng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ?

Bài giải:

Kẻ AH và CK vuông góc với d.

Ta có AB = CB (gt)

 =  ( đối đỉnh)

nên  ∆AHB =  ∆CKB (cạnh huyền - góc nhọn)

Suy ra CK = AH = 2cm

Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.

18 tháng 7 2019

đây là số sao bạn làm hình vậy

25 tháng 10 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\) (1)

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\left(đpcm\right).\)

Chúc bạn học tốt!