K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

Đặt u = 1 – x;

⇒ du = -dx

Đổi biến :

Giải bài 6 trang 113 sgk Giải tích 12 | Để học tốt Toán 12

Theo công thức tích phân từng phần:

Giải bài 6 trang 113 sgk Giải tích 12 | Để học tốt Toán 12

27 tháng 4 2017

Hỏi đáp Toán

12 tháng 1 2017

1 4 1 + x 3 4 3 + C

21 tháng 11 2018

- 13 42

a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)

=>(x-3/2)2=5/4

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)

b: \(x^2+\sqrt{2}x-1=0\)

nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

c: \(5x^2-7x+1=0\)

\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)

\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)

hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)

20 tháng 2 2023

\(x^2+y^2-2x+2y-2=0\)

\(\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-4=0\)

\(\left(x-1\right)^2+\left(y+1\right)^2=4\)

24 tháng 7 2023

Ta có:

\(\dfrac{x^2-4}{x+1}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)}{x+1}\)

Và:

\(\dfrac{x+2}{2x}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)}{2x\left(x-2\right)}\)

Vậy ta đã biến đổi hai phân thức đó để chúng bằng phân thức cũ và có tủ bằng nhau

24 tháng 7 2023

Mik cảm ơn ạ

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x}-2=\sqrt{y-1}-3=0$

$\Leftrightarrow x=4; y=10$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

b.

ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$

$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$

$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$

21 tháng 7 2016

d ) 

=(x2-3x)(x2-3x+2)-24

đặt x2-3x+1=a ta đc 

(a-1)(a+1)-24

=a2-1-24=a2-25

=(a-5)(a+5)

=(x2-3x+1+5)(x2-3x+1-5)

=(x2-3x+6)(x2-3x-4)

=(x2-3x+6)(x2-4x+x-4)

=(x2-3x+1)[x(x-4)+(x-4)]

=(x-4)(x+1)(x2-3x+1)

mấy câu kia làm tương tự nhé