Cho hình thoi ABCD. Chứng minh AC.BD < 2 AB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)
=>\(S_{ABCD}=AH\cdot BC=\dfrac{AC\cdot BD}{2}\)
=>\(2\cdot AH\cdot BC=AC\cdot BD\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN=QP
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
a) Hình vẽ:
A D B H K C
Xét hai tam giác vuông \(AHD\) và \(AKB\) ta có:
\(AD=AB\) (cạnh hình thoi)
\(\widehat{D}=\widehat{B}\) (hai góc đối hình thoi)
Do đó: \(\Delta AHD=\Delta AKB\) (cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\) (Đpcm)
b) Hình vẽ:
A D B H K C 1 2
Cách 1: Ta có: \(\Delta AHD=\Delta AKB\left(g.c.g\right)\)
\(\Rightarrow AD=AK\)
Hình bình hành \(ABCD\) có hai cạnh kề bằng nhau nên là hình thoi (Đpcm)
Cách 2: Ta có: \(\Delta AHC=\Delta AKC\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)
Hình bình hành \(ABCD\) có một đường chéo là phân giác của một góc nên là hình thoi (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D H K
xét \(\Delta\)ACK và ABH có
AB=AC(tc hình thoi)
\(\widehat{AKC}=\widehat{AHB}=90^o\)
\(\widehat{B}=\widehat{C}\)
theo trường hợp cạnh huyền góc nhọn
=>AH=AK (2 cạnh tương ứng)
b)
A B C D H K
xét \(\Delta\)AKDvà \(\Delta\)AHB
có\(\widehat{AHB}=\widehat{AK\text{D}}=90^o\)
AH=AK(gt)
\(\widehat{B}=\widehat{D}\)(tính chất HBH)
=>AB=AD(2 cạnh tương ứng)
ABCD là hình thoi vì là HBH có 2 cạnh kề bằng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
![](https://rs.olm.vn/images/avt/0.png?1311)
E, F lần lượt là trung điểm của AB và BC (gt)
\(\Rightarrow\) EF là đường trung bình của tam giác ABC
\(\Rightarrow\) EF // AC và EF = \(\frac{1}{2}\) AC (1)
H, G lần lượt là trung điểm của AD và DC (gt)
\(\Rightarrow\) HG là đường trung bình của tam giác ACD
\(\Rightarrow\) HG // AC và HG = \(\frac{1}{2}\) AC (2)
Từ (1) và (2) \(\Rightarrow\) EF // HG và EF = HG
\(\Rightarrow\) Tứ giác EFGH là hình bình hành
Tứ giác EFGH là hình bình hành. EF // AC, EF = \(\frac{1}{2}\) AC
Ta còn có EH là đường trung bình của tam giác ABD
\(\Rightarrow\) EH // BD và EH = \(\frac{1}{2}\) BD
- Tứ giác EFGH là hình chữ nhật
\(\Leftrightarrow\) Hình bình hành EFGH có:
\(\widehat{HEF}=90^o\)
\(\Leftrightarrow HE\perp EF\)
\(\Leftrightarrow EH\perp AC\)
\(\Leftrightarrow AC\perp BD\)
Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc với nhau thì tứ giác EFGH là hình chữ nhật
- Tứ giác EFGH là hình thoi
\(\Leftrightarrow\) Hình bình hành EFGH có: EF = EH \(\Leftrightarrow\) AC = BD
Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD bằng nhau thì tứ giác EFGH là hình thoi
- Tứ giác EFGH là hình vuông
\(\Leftrightarrow\) Hình chữ nhật EFGH có: EF = EH \(\Leftrightarrow\) AC = BD
Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc và bằng nhau thì tứ giác EFGH là hình vuông
G C D H A E B F Yen Nhi
Tương tự 4A. Ta có SABCD £ AB2
Mặt khác, SABCD = 0.5.AC.BD. Từ đó suy ra AC.BD £2AB2.