Giúp mh câu này vs m.n ơi
Cho tam giác ABC vuông tại A có AB = 1/2 BC. D là trung điểm của AC. Đường thẳng vuông góc với AC ở D cắt BC tại E. Chứng minh rằng: Tam giác EAC cân, tam giác ABE đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABE có
BO là đường cao
BO là đường phân giác
Do đó: ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
2: Xét ΔEBD và ΔABD có
BA=BE
\(\widehat{EBD}=\widehat{ABD}\)
BD chung
Do đó: ΔEBD=ΔABD
Suy ra: DE=DA
hay ΔDEA cân tại D(1)
\(\widehat{CEA}=180^0-60^0=120^0\)
\(\widehat{C}=180^0-105^0-60^0=15^0\)
=>\(\widehat{DAE}=180^0-120^0-15^0=45^0\)(2)
Từ (1) và (2) suy ra ΔDEA vuông cân tại D
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
Bài 3 :
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
Xét tam giác EAD và tam giác EDC có
AD= CD( vì D là trung điểm của AC)
góc ADE =góc EDC = 90
ED cạnh chung
=>. tam giác ADE = tam giác CDE(c.g.c)
=> AE=CE (cạnh tương ứng) và góc EAD= góc ECD ( góc tương ứng)
=> tam giác EAC là tam giác cân
CM: ABE đều