Cho hàm số y = cot 2 x 4 . Khi đó nghiệm của phương trình y ' = 0 là
A. π + k 2 π
B. 2 π + k 4 π
C. 2 π + k π
D. π + k π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z.
Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2.
Vì hàm số y = sin4x là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O.
Các hàm số y = sin4x (C1) và y = sin4x + 1 (C2) có đồ thị như trên hình 1 và hình 2.
b) Vì sin4x + 1 = m ⇔ sin4x = m – 1
và -1 ≤ sin4x ≤ 1
nên -1 ≤ m – 1 ≤ 1
⇔ 0 ≤ m ≤ 2.
Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0.
c) Phương trình tiếp tuyến của (C2) có dạng
y - y o = y ’ ( x o ) ( x - x o ) .
-π = -3,14; -2π = -6,28; (-5π)/2 = -7,85.
Vậy (-5π)/2 < -6,32 < -2π.
Do đó điểm M nằm ở góc phần tư thứ II.
Đáp án: B
Chọn B.
y ' = cot 2 x 4 ' = 2 cot x 4 cot x 4 ' = 1 2 cot x 4 1 + cot 2 x 4
y ' = 0 ⇔ 1 2 cot x 4 1 + cot 2 x 4 = 0
⇔ cot x 4 = 0 ⇔ x 4 = π 2 + k π ⇔ x = 2 π + k 4 π , k ∈ ℤ