3x-1+3x+3x+1=39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹.(1 + 3 + 3²) = 39
3ˣ⁻¹.13 = 39
3ˣ⁻¹ = 39 : 13
3ˣ⁻¹ = 3
x - 1 = 1
x = 1 + 1
x = 2
\(3^{x-1}+3^x+3^{x+1}=39\)
\(=>3^x:3+3^x+3^x.3=39\)
\(=>3^x.\dfrac{1}{3}+3^x+3^x.3=39\)
\(=>3^x.\left(\dfrac{1}{3}+1+3\right)=39\)
\(=>3^x.\dfrac{13}{3}=39\)
\(=>3^x=39:\dfrac{13}{3}=39.\dfrac{3}{13}\)
\(=>3^x=9=3^2\)
\(=>x=2\)
\(3^{x-1}+3^x+3^{x+1}=39\)
\(3^{x-1}+3^{x-1}.3+9.3^{x-1}=39\)
\(13.3^{x-1}=39\)
\(3^{x-1}=39:13=3\)
\(x-1=1\)
\(x=2\)
Sửa đề: 3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹ + 3ˣ + 3ˣ⁺¹ = 39
3ˣ⁻¹.(1 + 3 + 3²) = 39
3ˣ⁻¹ . 13 = 39
3ˣ⁻¹ = 39 : 13
3ˣ⁻¹ = 3
x - 1 = 1
x = 1 + 1
x = 2
\(\Leftrightarrow3^{x-1}\left(1+3+3^2\right)=39\\ \Leftrightarrow3^{x-1}\cdot13=39\\ \Leftrightarrow3^{x-1}=3=3^1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\)
\(\Leftrightarrow3^x\cdot\dfrac{13}{3}=39\)
\(\Leftrightarrow x=2\)
\(=3^{x+1}\left(1+3+3^2\right)+...+3^{x+10}\left(1+3+3^2\right)=\)
\(=3^x.3.13+...+3^{x+9}.3.13=\)
\(39\left(3^x+...+3^{x+9}\right)⋮39\)
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
Ta có:
\(y'=\left(3^{x+1}\right)'\)
\(=3^{x+1}ln3\)
\(\Rightarrow A\)
-Chúc bạn học tốt-
\(D=R\backslash\left\{0\right\}\)
\(\sin^3x+\cos^3x=\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cos x+\cos^2x\right)=\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)\)
\(2-\sin2x=2-2\sin x\cos x=2\left(1-\sin x\cos x\right)\)
\(\Rightarrow y=\dfrac{\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)}{2\left(1-\sin x\cos x\right)}=\dfrac{\sin x+\cos x}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}y'=\dfrac{2\cos x-2\sin x}{4}=\dfrac{1}{2}\left(\cos x-\sin x\right)\Rightarrow y'^2=\dfrac{1}{4}\left(\cos^2x-2\sin x\cos x+\sin^2x\right)=\dfrac{1}{4}\left(1-2\sin x\cos x\right)\\y''=-\dfrac{1}{2}.\sin x-\dfrac{1}{2}\cos x\Rightarrow y''^2=\left[-\dfrac{1}{2}\left(\sin x+\cos x\right)\right]^2=\dfrac{1}{4}\left(1+2\sin x\cos x\right)\end{matrix}\right.\)
\(\Rightarrow2\left(y'^2+y''^2\right)=2\left[\dfrac{1}{4}\left(1-\sin2x\right)+\dfrac{1}{4}\left(1+\sin2x\right)\right]=1\)
`a, (3x-1)^3-(3x+1)^3`
`= (3x-1-3x-1)(9x^2-6x+1+9x^2-1+9x^2+6x+1`
`= (-2)(27x^2 +1)`
`= -54x^2-2`.
`b, (1+3x)^3 - (1-3x)^3`
`= 1+ 9x + 27x^2 + 27x^3 - 1 + 9x - 27x^2 + 27x^3`
`= 54x^3 + 18x`.
`c, = 54x^3 + 18x -1 +9x^2`.
a: =27x^3-27x^2+9x-1-27x^3-27x^2-9x-1
=-54x^2-2
b: =27x^3+27x^2+9x+1-27x^3+27x^2-9x+1
=54x^2+2
c: =54x^2+2+(3x-1)(3x+1)
=54x^2+2+9x^2-1
=63x^2+1
*Gọi a=x-1, b=2x-3, c=3x-5.
-Phương trình trở thành:
a3+b3+c3-3abc=0 ⇔(a+b)3+c3-3ab(a+b)-3abc=0
⇔(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=0
⇔(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0
⇔(a+b+c)(a2+b2+c2-ab-ac-bc)=0
⇔a+b+c=0 hay a2+b2+c2-ab-ac-bc=0
*a+b+c=0 ⇔x-1+2x-3+3x-5=0 ⇔6x-9=0 ⇔x=\(\dfrac{3}{2}\)
*a2+b2+c2-ab-ac-bc=0
Vì a2+b2+c2-ab-ac-bc≥0 và dấu bằng xảy ra khi và chỉ khi a=b=c nên
=>x-1=2x-3 ⇔x=2
=>x-1=3x-5 ⇔x=2
=>2x-3=3x-5⇔ x=2