Cho hình chóp tứ giác đều có thể tích là 125 c m 3 , chiều cao của hình chóp là 15cm. Tính chu vi đáy?
A. 20cm
B. 24cm
C. 32cm
D. 40cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sxq=1/2*40*13=20*13=260cm2
Độ dài cạnh ở đáy là 40/4=10cm
V=10^2*12=1200cm3
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
⇒ SO2 = SA2 – OA2 = SA2 – (AC/2)2 = 242 - = 376
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp:
b) Gọi H là trung điểm của CD
SH2 = SD2 – DH2 = 242 – = 476
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxq = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ = AB2 = 202 = 400 (cm2 )
⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp :
\(V=\frac{1}{2}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2\approx2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxp = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ= AB2 = 202 = 400 (cm2 )
⇒ Stq = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
Hướng dẫn làm bài:
a) SO2=SD2−OD2=242−(20√22)2=376SO2=SD2−OD2=242−(2022)2=376
= > SO≈19,4(cm)SO≈19,4(cm)
V=13.202.19,4≈2586,6V=13.202.19,4≈2586,6 (cm2)
b)Gọi H là trung điểm của CD.
SH2=SD2−DH2=242−(202)2=476SH2=SD2−DH2=242−(202)2=476
=>SH ≈ 21,8 (cm)
Sxq≈12.80.21,8≈872Sxq≈12.80.21,8≈872 (cm2)
Sd=AB2=202=400(cm2)Sd=AB2=202=400(cm2)
Nên Stp=Sxq+Sd=872+2.400=1672(cm)2
( Vào TKHĐ là thấy hính nha bạn )
a) S.ABCD là hình chóp tứ giác đều
=> ABCD là hình vuông
=> .\(AC=AB\sqrt{2}=20\sqrt{2}\left(cm\right)\)
SO là chiều cao của hình chóp
=> O = AC ∩ BD và SO ⊥ (ABCD)
=> SO ⊥ AO
=> ΔSAO vuông tại O
=> SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
=> SO = \(\sqrt{376}\approx19,4\left(cm\right)\)(cm).
Thể tích hình chóp :
\(V=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2=2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD :
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
\(\Rightarrow SH=\sqrt{476}\approx21,8\left(cm\right)\)
=> Sxq = p.d = 2.AB.SH = \(2.20.\sqrt{476}\approx\) 872,7 (cm2 ).
Sđ = AB2 = 202 = 400 (cm2 )
⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
Chọn đáp án A