Cho ˆxOyxOy^ đối đỉnh với ˆx′Oy′x′Oy′^ và ˆxOy=120∘xOy^=120∘. Số đo ˆx′Oy′x′Oy′^ là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: Oz nằm giữa tia Ox và Oy
\(\Rightarrow\widehat{xOz}=\widehat{xOy}-\widehat{yOz}=120^0-30^0=90^0\)
=> Oz⊥Ox
2) Ta có: Ox' là tia đối của tia Ox
\(\Rightarrow\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-120^0=60^0\)(2 góc kề bù)
Ta có: Ox' là tia đối của tia Ox, Oy' là tia đối của tia Oy
\(\widehat{\Rightarrow x'Oy'}=\widehat{xOy}=120^0\)(2 góc đối đỉnh)
1: Trên cùng một nửa mặt phẳng bờ chứa tia Oy, ta có: \(\widehat{yOz}< \widehat{yOx}\)
nên tia Oz nằm giữa hai tia Ox và Oy
Suy ra: \(\widehat{xOz}+\widehat{yOz}=\widehat{xOy}\)
\(\Leftrightarrow\widehat{xOz}=90^0\)
hay Ox\(\perp\)Oz
Ta có :
góc xOy đối đỉnh x"Oy" (giả thiết)
=> góc xOy = góc x"Oy"
Mà góc xOy = 50 độ nên góc x"Oy" = 50 độ
a) vì \(\widehat{xoy}< \widehat{xoz}\left(40^o< 120^o\right)\) nên ta có :
\(\widehat{xoz}=\widehat{xoy}+\widehat{yoz}\)
\(\Rightarrow\widehat{yoz}=\widehat{xoz}-\widehat{xoy}=120^o-40^o=130^o\)
vậy \(\widehat{yoz}=130^o\)
b) vì Tia Ot là tia đối của tia Oy nên \(\widehat{xot}\) và \(\widehat{xoy}\) là 2 góc kề bù,ta có:
\(\widehat{xot}+\widehat{xoy}=180^o\)
\(\Rightarrow\widehat{xot}=180^o-\widehat{xoy}=180^o-40^o=140^o\)
vậy:\(\widehat{xot}=140^o\)
c) Vẽ Om là tia phân giác của tia Oy(????) .. Tính số đo góc xOt . Chứng tỏ tia Oy là tia phần giác của góc xOm
(đề ko đc rõ )
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOz}\left(40^0< 120^0\right)\)
nên tia Oy nằm giữa hai tia Ox và Oz
\(\Leftrightarrow\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)
\(\Leftrightarrow\widehat{yOz}+40^0=120^0\)
hay \(\widehat{yOz}=80^0\)
Vậy: \(\widehat{yOz}=80^0\)
b) Ta có: \(\widehat{xOy}+\widehat{xOt}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{xOt}+40^0=180^0\)
hay \(\widehat{xOt}=140^0\)
Vậy: \(\widehat{xOt}=140^0\)
x'Oy' = 60