Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
a) Ta có:
\(\widehat{xOz}+\widehat{zOy}=90^o\)
Mà \(\widehat{xOz}=\widehat{nOy}\left(gt\right)\) ; Mà \(\widehat{zOy}=\widehat{xOm}\left(gt\right)\)
=>\(\widehat{nOy}+\widehat{zOy}=90^o\) ; =>\(\widehat{xOz}+\widehat{xOm}=90^o\)
\(\widehat{nOz}=90^o\) ; \(\widehat{zOm}=90^o\)
Ta có:
\(\widehat{nOm}=\widehat{nOz}+\widehat{zOm}=90^o+90^o=180^o\)
=> Om,On là hai tia đối nhau
b) Ta có:
\(Oz⊥MN\left(\widehat{nOz}=\widehat{mOz}=90^o\right)\)
Mà \(OM=ON\left(gt\right)\)
=> Oz là đường trung trực của MN
a) (Sửa lại là xOy và x'Oy' đối đỉnh nha, k có t trog đề bài )
Ta có : \(\widehat{x'Oy}=180^o-\widehat{xOy}=180^o-45^o=135^o\)
Oy là tia phân giác của góc x'Oy' nên \(\widehat{x'Oy'}=\frac{1}{2}\widehat{x'Oz}=\frac{1}{2}.90^o=45^o\)
Do đó \(\widehat{x'Oy}+\widehat{x'Oy'}=135^o+45^o=180^o\) => Oy, Oy' là 2 tia đối nhau (1)
; đã có điểm O trên đg thẳng xx' nên Ox, Ox' đối nhau (2)
Từ (1) và (2) => góc xOy và x'Oy' đối đỉnh
b) Ta có : \(\widehat{xOy}+\widehat{yOt}+\widehat{x'Ot}=180^o\) (kề bù)
=> \(\widehat{x'Ot}=180^o-45^o-90^o=45^o\)
Bài giải
x y z O t m
Vì \(\widehat{xOz}=\widehat{yOt}=150^o\) có \(\widehat{tOz}\) chung \(\widehat{tOx}=\widehat{yOz}\) mà \(\widehat{yOz}=\widehat{yOm}\left(=\frac{1}{2}\widehat{mOz}\right)\)
\(\Rightarrow\text{ }\widehat{xOt}=\widehat{yOm}\)
Ta dễ dàng chứng minh được \(Om\) và \(Ot\) đối nhau
\(\Rightarrow\text{ }\widehat{tOy}\text{ và }\widehat{mOx}\) là hai góc đối nhau