Tìm nghiệm dương của phương trình: x 2 - 8x + 10 = 0
A. 4 + 6
B. 4 + 6 2
C. 4 - 6 2
D. Đáp án khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2+12=8x`
`<=>x^2-8x+12=0`
`<=>(x-2)(x-6)=0`
`<=>` $\left[ \begin{array}{l}x=2\\x=6\end{array} \right.$
`x^2-10x+12=0`
`<=>(x-5)^2-13=0`
`<=>` $\left[ \begin{array}{l}x=-\sqrt{13}+5\\x=\sqrt{13}+5\end{array} \right.$
Vậy không cso đáp án do đề sai
Số nào dưới đây là nghiệm chung của hai phương trình \(x^2+12=8x\) và \(x^2-10x+12=0\) ?
Giải thích:
\(\left(1\right)x^2+12=8x\Leftrightarrow x^2-8x+12=0\)
\(\left(2\right)x^2-10x+12=0\)
Nghiệm của phương trình (1) là: \(\left\{{}\begin{matrix}x_1=6\\x_2=2\end{matrix}\right.\)
Nghiệm của phương trình (2) là: \(\left\{{}\begin{matrix}x_1=5+\sqrt{13}\\x_2=5-\sqrt{13}\end{matrix}\right.\)
\(\Rightarrow\) Không có nghiệm chung.
a: \(\left\{{}\begin{matrix}x_1+x_2=8\\x_1x_2=6\end{matrix}\right.\)
\(D=x_1^4-x_2^4=\left(x_1+x_2\right)\left(x_1-x_2\right)\left(x_1^2+x_2^2\right)\)
\(=8\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\cdot\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=8\cdot\left[8^2-2\cdot6\right]\cdot\sqrt{8^2-4\cdot6}\)
\(=8\cdot52\cdot2\sqrt{10}=832\sqrt{10}\)
b: \(E=\left(x_1^2+x_2^2\right)^2-2x_1^2\cdot x_2^2\)
\(=52^2-2\cdot\left(x_1\cdot x_2\right)^2=52^2-2\cdot6^2=2632\)
c: \(F=\dfrac{3x_2^2+3x_1^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{3\cdot52}{6^2}=\dfrac{13}{3}\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Đáp án D
Ta có: a = 1; b = - 8 nên b’ = -4; c = 10.
△ ' = - 4 2 - 1.10 = 16 - 10 = 6
Do đó, phương trình đã cho có hai nghiệm phân biệt là;
Vậy cả hai nghiệm trên đều là nghiệm dương của phương trình đã cho.