tìm số tự nhiên n thuộc N có 2 chữ số sao cho n+1 và 2n+1 đều là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
⟺n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k thì ... Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
⟺n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k
Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.
Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.
Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.
Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).
Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).
Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).
Từ đó n chia hết cho 40.
Với n = 40 ta thấy thỏa mãn
Với n = 80 ta tháy không thỏa mãn.
Vậy n = 40.
Vì \(n\)là số tự nhiên có 2 chữ số
\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)
Vì \(2n+1\)là số chính phương lẻ
\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)
\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)
Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:
+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)
+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)
+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)
+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)
+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)
Vậy \(n=40\)
Chúc bn hok tốt ^_^
1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84.
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương.
Vậy n = 40
1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2) Xin lỗi mình chỉ biết làm câu 1 thôi
Vì n có 2 cguwx số. Theo bài ra: 10 <hoặc bằng n < hoặc bằng 99
=> 11 < hoặc bằng n + 1 < 991 và 21< hoặc bằng 2n + 1< hoặc bằng 199
n + 1 là số chính phương lẻ => n + 1 \(\in\) { 25;36;49;81;121;169;225...}
=> n \(\in\) {24;35;48;80} (1)
2n + 1 là số chính phương lẻ => 2n + 1 \(\in\) { 25;36;49;81;121;169;225...}
=> n \(\in\) {12;24;40;60;84} (2)
Từ (1) và (2) => n= 24
Vậy n = 24 thì n + 1 và 2n + 1 là số chính phương