Giải phương trình nghiệm nguyên :
\(x^3+8=7\sqrt{8x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
⇔ \(\sqrt{x+3}>\sqrt{7-x}+\sqrt{2x-8}\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>7-x+2x-8+2\sqrt{\left(7-x\right)\left(2x-8\right)}\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\x+3>x-1+2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\4>2\sqrt{\left(7-x\right)\left(2x+8\right)}\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\sqrt{\left(7-x\right)\left(2x-8\right)}< 2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\-2x^2+22x-56< 2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4\le x\le8\\\left[{}\begin{matrix}x>\dfrac{11+\sqrt{5}}{2}\\x< \dfrac{11-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}4\le x< \dfrac{11-\sqrt{5}}{2}\\\dfrac{11+\sqrt{5}}{2}< x\le8\end{matrix}\right.\)
Các giá trị nguyên của x thỏa mãn là S = {4 ; 7 ; 8}
Ấy chết sai điều kiện XĐ rồi, bạn sửa lại điều kiện thôi nhé
Đk:\(x\ge-\frac{1}{8}\)
\(pt\Leftrightarrow x^3-27-7\sqrt{8x+1}+35=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9-\frac{56}{\sqrt{8x+1}+5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2+3x+9-\frac{56}{\sqrt{8x+1}+5}=0\end{cases}}\)
nghiệm còn lại bn tự tính nhưng nó khá lẻ
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Ta có: \(8x^3+2x=\sqrt[3]{x+7}+x+7\)
Đặt \(\sqrt[3]{x+7}=t\)
\(\Rightarrow8x^3+2x=t+t^3\)
\(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2\right)+\left(2x-t\right)=0\)
\(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=t\\4x^2+2xt+t^2+1=0\end{matrix}\right.\)
Với 2x=t \(\Leftrightarrow2x=\sqrt[3]{x+7}\Leftrightarrow8x^3-x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^2+8x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\8x^2+8x+7=0\left(loại\right)\end{matrix}\right.\)
Với \(4x^2+2xt+t^2+1=0\)
Do \(4x^2+2xt+t^2+1=\left(x+t\right)^2+3x^2+1\ge1>0\)
⇒ ptvn
Đk: `1 <=x <=7`.
Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.
Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.
`<=> b^2 + 2a = 2b + ab.`
`<=> b(b-2) = a(b-2)`
`<=> (b-a)(b-2) = 0`
`<=> a =b` hoặc `b = 2.`
`@ a = b => 7 - x = x - 1`
`<=> 8 = 2x <=> x = 4`.
`@ b = 2 => sqrt(x-1) = 2`
`<=> x - 1 = 4`
`<=> x = 5`.
Vậy `x = 4` hoặc `x = 5`.
\(\text{ĐKXĐ:}1\le x\le7\)
PT đã cho tương đương với:
\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)
Đặt:
\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)
Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:
\(b-a+\sqrt[3]{a^3-b^3+8}=2\)
\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)
\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)
\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)
\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)
Lời giải:
ĐKXĐ: $x\geq -3,5$
PT \(\Leftrightarrow (\sqrt{2x+7}-1)+(\sqrt[3]{x+4}-1)+(x^2+8x+15)=0\)
\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x+7}+1}+\frac{x+3}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+3)(x+5)=0\)
\(\Leftrightarrow (x+3)\left[\frac{2}{\sqrt{2x+7}+1}+\frac{1}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+5)\right]=0\)
Với $x\geq -3,5$ dễ thấy biểu thức trong ngoặc vuông $>0$
Do đó: $x+3=0$
$\Leftrightarrow x=-3$ (thỏa mãn)
Tìm tất cả các nghiệm của PT ra rồi lấy x nguyên
To lắm đó Tạ Duy Phương