K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

Tìm tất cả các nghiệm của PT ra rồi lấy x nguyên

7 tháng 1 2016

To lắm đó Tạ Duy Phương

24 tháng 11 2016

Đk:\(x\ge-\frac{1}{8}\)

\(pt\Leftrightarrow x^3-27-7\sqrt{8x+1}+35=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9-\frac{56}{\sqrt{8x+1}+5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2+3x+9-\frac{56}{\sqrt{8x+1}+5}=0\end{cases}}\)

nghiệm còn lại bn tự tính nhưng nó khá lẻ

24 tháng 1 2022

Ta có: \(8x^3+2x=\sqrt[3]{x+7}+x+7\)

Đặt \(\sqrt[3]{x+7}=t\)

 \(\Rightarrow8x^3+2x=t+t^3\)

 \(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2\right)+\left(2x-t\right)=0\)

 \(\Leftrightarrow\left(2x-t\right)\left(4x^2+2xt+t^2+1\right)=0\)

 \(\Leftrightarrow\left[{}\begin{matrix}2x=t\\4x^2+2xt+t^2+1=0\end{matrix}\right.\)

Với 2x=t \(\Leftrightarrow2x=\sqrt[3]{x+7}\Leftrightarrow8x^3-x-7=0\)

               \(\Leftrightarrow\left(x-1\right)\left(8x^2+8x+7\right)=0\)

               \(\Leftrightarrow\left[{}\begin{matrix}x=1\\8x^2+8x+7=0\left(loại\right)\end{matrix}\right.\)

Với \(4x^2+2xt+t^2+1=0\)

Do  \(4x^2+2xt+t^2+1=\left(x+t\right)^2+3x^2+1\ge1>0\)

  ⇒ ptvn

Đk: `1 <=x <=7`.

Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.

Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.

`<=> b^2 + 2a = 2b + ab.`

`<=> b(b-2) = a(b-2)`

`<=> (b-a)(b-2) = 0`

`<=> a =b` hoặc `b = 2.`

`@ a = b => 7 - x = x - 1`

`<=> 8 = 2x <=> x = 4`.

`@ b = 2 => sqrt(x-1) = 2`

`<=> x - 1 = 4`

`<=> x = 5`.

Vậy `x = 4` hoặc `x = 5`.

\(\text{ĐKXĐ:}1\le x\le7\)

PT đã cho tương đương với:

\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)

 

19 tháng 5 2018

Đặt:

\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)

Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:

\(b-a+\sqrt[3]{a^3-b^3+8}=2\)

\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)

\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)

\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)

\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Lời giải:
ĐKXĐ: $x\geq -3,5$

PT \(\Leftrightarrow (\sqrt{2x+7}-1)+(\sqrt[3]{x+4}-1)+(x^2+8x+15)=0\)

\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x+7}+1}+\frac{x+3}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+3)(x+5)=0\)

\(\Leftrightarrow (x+3)\left[\frac{2}{\sqrt{2x+7}+1}+\frac{1}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+5)\right]=0\)

Với $x\geq -3,5$ dễ thấy biểu thức trong ngoặc vuông $>0$

Do đó: $x+3=0$

$\Leftrightarrow x=-3$ (thỏa mãn)

19 tháng 5 2018

Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần

14 tháng 8 2017

đặt \(\sqrt{7-x}=a\) , \(\sqrt{x-1}=b\)

rồi thay vào và ptđttnt

14 tháng 8 2017

ĐK: \(1\le x\le7\)

\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

\(x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{-x^2+8x-7}=0\)

Đặt \(\sqrt{x-1}=a;\sqrt{7-x}=b\left(a,b\ge0\right)\)

\(pt\Rightarrow a^2+2b-2a-ab=0\Leftrightarrow\left(a^2-ab\right)-\left(2a-2b\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a-2=0\\a=b\end{cases}}\)

TH1: \(a-2=0\Rightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(tm\right)\)

TH2: \(a=b\Rightarrow\sqrt{x-1}=\sqrt{7-x}\Rightarrow x=4\left(tm\right)\)

Vậy pt có 2 nghiệm x = 4 hoặc x = 5.