cho ab-ac+bc-c^2= -1 với a b c thuộc Z khi đó a+b=
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DH
0
VT
3
HP
31 tháng 12 2015
ab-ac+bc-c^2=-1
<=>a(b-c)+c(b-c)=-1
<=>(b-c)(a+c)=-1
=> trong 2 thừa số b-c và a+c 1 thừa số bằng 1,thừa số kia bằng -1, tức chúng đối nhau
Vậy b-c=-(a+c)=>b-c=-a-c=>b=-a hay chúng đối nhau
=>a+b=0
HT
1
LH
3
DH
1
NH
1
NH
1
PQ
3
HP
27 tháng 12 2015
ab-c+bc0c^2=-1
<=>a(b-c)+c(b-c)=-1
<=>(b-c)(a+c)=-1
=>một trong b-c;a+c phải bằng 1,thừa số kia bằng -1=>b-c và a+c đối nhau
do đó b-c=-(a+c)=>b-c=-a-c
=>b=-a hay a+b=0
tick nhé
27 tháng 12 2015
\(\left(ab-ac\right)+\left(bc-c^2\right)=1\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=1\Leftrightarrow\left(a+c\right)\left(b-c\right)=1\)
+ a+c =1 => a =1-c và b -c = 1 =>b =1+c => a +b = 1-c + 1+c =2
+ a+c =-1 => a =-1-c và b-c =-1 => b =-1+c => a+b = -1-c + (-1+c) = -2