(GIÚP MÌNH CÂU C)
Cho góc xOy=60o. Lấy A nằm bên trong góc xOy. Gọi B đối xứng với A qua Ox. C đối xứng với A qua Oy.
a) So sánh OB và OC
b) Tính góc BOC.
c)Qua B vẽ tia BZ//OA; BZ cắt Ox tại E. Chứng minh AOBE là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: A và B đối xứng nhau qua Ox
nên OA=OB(1)
Ta có: A và C đối xứng nhau qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
a: A đối xứng B qua ox
=>OA=OB
=>ΔOAB cân tại O
=>Ox là phân giác của góc AOB(1)
A đối xứng C qua Oy
=>OA=OC
=>ΔOAC cân tại O
=>Oy là phân giác của góc AOC(2)
OA=OC
OB=OA
=>OC=OB
b: Từ (1), (2) suy ra góc BOC=2*(góc xOA+góc yOA)
=2*góc xOy=180 độ
=>B,O,C thẳng hàng
a) + B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (= OA)
b) + ΔOAC cân tại O có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
+ ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
a: Ta có: B đối xứng với A qua Ox
nên OA=OB(1)
Ta có: C đối xứng với A qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
a: A và B đối xứng nhau qua Ox
nên OA=OB(1)
Ta có: A và C đối xứng nhau qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC