Cho góc xOy=60o. Lấy A nằm bên trong góc xOy. Gọi B đối xứng với A qua Ox. C đối xứng với A qua Oy.
a) So sánh OB và OC
b) Tính góc BOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A và B đối xứng nhau qua Ox
nên OA=OB(1)
Ta có: A và C đối xứng nhau qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
a) + B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (= OA)
b) + ΔOAC cân tại O có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
+ ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
a: A đối xứng B qua ox
=>OA=OB
=>ΔOAB cân tại O
=>Ox là phân giác của góc AOB(1)
A đối xứng C qua Oy
=>OA=OC
=>ΔOAC cân tại O
=>Oy là phân giác của góc AOC(2)
OA=OC
OB=OA
=>OC=OB
b: Từ (1), (2) suy ra góc BOC=2*(góc xOA+góc yOA)
=2*góc xOy=180 độ
=>B,O,C thẳng hàng
a: Ta có: A và B đối xứng nhau qua Ox
nên Ox là đường trung trực của AB
Suy ra: OA=OB(1)
Ta có: A và C đối xứng nhau qua Oy
nên Oy là đường trung trực của AC
Suy ra: OA=OC(2)
từ (1) và (2) suy ra OB=OC
hay ΔOBC cân tại O
a; Vì C đối xứng với A qua Oy => CA vuông góc với Oy và Oy đi qua trung điểm Ca
=> O thuộc dường trung trục CA => oC = OA ( tính chất đường trung trực ) (1)
Tương tự OB = OA (2)
Từ (1) và (2) => OB = OC
b; Gọi AC giao OY tại M ; AB giao Õx tại N
OA= OB => tam giác ABO cân tại O => OM vừa là đg cao vừa là p/g => COM = AOM (1)
CMTT AON = BON
BOC = COM + AOM + AON + BON = AOM + AOM + AON + AON = 2 ( AOM + AON ) = 2. xOy = 2.50 = 100 độ
a: Ta có: A và B đối xứng nhau qua Ox
nên OA=OB(1)
Ta có: A và C đối xứng nhau qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC