K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

NV
20 tháng 9 2021

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

NV
20 tháng 9 2021

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

NV
21 tháng 1 2024

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

21 tháng 1 2024

e cảm ơn ạ

NV
9 tháng 7 2021

Lý thuyết đồ thị:

Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)

Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)

a.

\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)

\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:

\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)

NV
9 tháng 7 2021

b.

\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)

\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)

\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)

Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)

Phương trình có nghiệm khi và chỉ khi:

\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)

9 tháng 7 2021

a) \(\sqrt{3}\left(\dfrac{1+cos2x}{2}\right)+\dfrac{1}{2}sin2x=m\) ↔ \(\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=m-\dfrac{\sqrt{3}}{2}\) 

\(\sqrt{3}cos2x+sin2x=2m-\sqrt{3}\) ↔ \(2cos\left(\dfrac{\pi}{6}-2x\right)=2m-\sqrt{3}\)

\(cos\left(\dfrac{\pi}{6}-2x\right)=m-\dfrac{\sqrt{3}}{2}\) 

Pt có nghiệm khi và chỉ khi \(-1\le m-\dfrac{\sqrt{3}}{2}\le1\) 

b)  \(\left(3+m\right)sin^2x-2sinx.cosx+mcos^2x=0\)

 cosx=0→ sinx=0=> vô lý 

→ sinx#0 chia cả 2 vế của pt cho cos2x ta đc:

\(\left(3+m\right)tan^2x-2tanx+m=0\)

pt có nghiệm ⇔ △' ≥0

Tự giải phần sau 

c) \(\left(1-m\right)sin^2x+2\left(m-1\right)sinx.cosx-\left(2m+1\right)cos^2x=0\) 

⇔cosx=0→sinx=0→ vô lý

⇒ cosx#0 chia cả 2 vế pt cho cos2x

\(\left(1-m\right)tan^2x+2\left(m-1\right)tanx-\left(2m+1\right)=0\)

pt có nghiệm khi và chỉ khi △' ≥ 0

Tự giải

 

10 tháng 4 2021

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)