Cho lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a. Gọi M, N, P là trung điểm của các cạnh AD, DC, A’D’. Tính khoảng cách giữa CC’ và mặt phẳng (MNP)?
A. a 2 4
B. a 3 3
C. a 2
D. a 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC đều cạnh a và M là trung điểm BC cho nên A M ⊥ B C và A M = a 3 2 .
A M ⊥ B C và A A ' ⊥ B C ⇒ A ' M ⊥ B C
⇒ Góc giữa hai mặt phẳng (A’BC) và (ABC) là A ' M A ^ = 60 o
Tam giác A’AM vuông góc tại A nên A A ' = A M . tan 60 o = a 3 2 . 3 = 3 a 2
Diện tích hình chữ nhật BB’C’C là S B B ' C ' C = B B ' . B C = 3 a 2 2
A M ⊥ B C và A M ⊥ B B ' ⇒ A M ⊥ B B ' C ' C
Thể tích khối chóp A.BB’C’C là: V = 1 3 . S B B ' C ' C . A M = 1 3 . 3 a 2 2 . a 3 2 = a 3 3 4 (đvtt).
Đáp án A
a) Gọi I là trung điểm của cạnh B'C'. Theo giả thiết ta có AI ⊥ (A'B'C') và ∠ A A ′ I = 60 ο . Ta biết rằng hai mặt phẳng (ABC) và (A'B'C') song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.
Do đó
b)
⇒ B′C′ ⊥ AA′
Mà AA′ // BB′ // CC′ nên B’C’ ⊥ BB’
Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.
Đáp án A
Khoảng cách giữa hai mặt đáy là h = AH = A’H.tan A A ' H ^ = a 3 2 . tan 30 0 = a 2
Chọn A.
- Ta có: