Biết rằng S = 1 + 2.3 + 3.3 2 + ... + 11.3 10 = a + 21.3 b 4 . Tính P = a + b 4 .
A. P =1
B. P =2
C. P =3
D.P = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1.3^0+2.3^1+3.3^2+...+11.3^{10}\)
\(3S=1.3^1+2.3^2+...+11.3^{11}\)
\(\Rightarrow S-3S=1+3^1+3^2+...+3^{10}-11.3^{11}\)
\(\Rightarrow-2S=1.\dfrac{3^{11}-1}{3-1}-11.3^{11}\)
\(\Rightarrow-2S=\dfrac{1}{2}.3^{11}-\dfrac{1}{2}-11.3^{11}\)
\(\Rightarrow-2S=-\dfrac{21.3^{11}+1}{2}\)
\(\Rightarrow S=\dfrac{1}{4}+\dfrac{21.3^{11}}{4}\)
Bài 2
\(a,\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\left(x-5\right)^4\left(x-5+1\right)\left(x-5-1\right)=0\)
\(\Rightarrow\left(x-5\right)^4\left(x-4\right)\left(x-6\right)=0\)
\(\Rightarrow x\in\left\{4;5;6\right\}\)
\(b,\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2xs-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3\left(2x-15+1\right)\left(2x-15-1\right)=0\)
\(\Rightarrow\left(2x-15\right)^3\left(2x-14\right)\left(2x-16\right)\)
\(\Rightarrow x\in\left\{\frac{15}{2};7;8\right\}\)
Mà \(\frac{15}{2}\notin n\)
\(\Rightarrow x\in\left\{7;8\right\}\)
#)Giải :
Bài 1 :
a)\(A=\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
b)\(B=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}-3^{30}}{2^2.3^{28}}=\frac{11.3^{29}-3^{29}.3}{2^2.3^{28}}=\frac{3^{29}\left(11-3\right)}{2^2.3^{28}}=\frac{3^{29}.2^3}{2^2.3^{28}}=6\)
Bài 2 :
a) \(\left(x-5\right)^2=\left(x-5\right)^6\)
\(\Leftrightarrow x^4-625=x^6-15625\)
\(\Leftrightarrow x^6-x^4=15000\)
\(\Leftrightarrow x^6-x^4=5^6-5^4\)
\(\Leftrightarrow x=5\)
b)\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Leftrightarrow2x-15=1\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
Lời giải:
$A=1(1+1)+2(2+1)+3(3+1)+....+98(98+1)$
$=(1.1+2.2+3.3+...+98.98)+(1+2+3+...+98)$
$=B+(1+2+3+...+98)$
$\Rightarrow A-B=1+2+3+...+98=98.99:2=4851$
\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^{ }^2_{ }\widebat{ }\varnothing\alpha}\)ok
chua
Chọn C
Từ giả thiết suy ra 3 S = 3 + 2.3 2 + 3.3 3 + ... + 11.3 11 . Do đó
− 2 S = S − 3 S = 1 + 3 + 3 2 + ... + 3 10 − 11.3 11 = 1. 1 − 3 11 1 − 3 − 11.3 11 = − 1 2 − 21.3 11 2 ⇒ S = 1 4 + 21 4 .3 11 .
vì
S = 1 4 + 21.3 11 4 = a + 21.3 b 4 ⇒ a = 1 4 , b = 11 ⇒ P = 1 4 + 11 4 = 3.