K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Chọn D.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta phân tích:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

Chọn B

NV
17 tháng 4 2022

\(\overrightarrow{AC'}+\overrightarrow{CA'}+\overrightarrow{BD'}+\overrightarrow{DB'}\)

\(=2\left(\overrightarrow{OC'}+\overrightarrow{OA'}\right)+2\left(\overrightarrow{OD'}+\overrightarrow{OB'}\right)\)

\(=2.\left(-2\overrightarrow{OI}\right)+2.\left(-2\overrightarrow{OI}\right)\)

\(=-4.2\overrightarrow{OI}\)

\(\Rightarrow2\overrightarrow{OI}=-\dfrac{1}{4}\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{x}+\overrightarrow{y}\right)\)

6 tháng 3 2018

Đáp án D

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+) A đúng do tính chất đường trung bình trong ΔB'AC và tính chất của hình bình hành ACC'A'.

+) B đúng do IK // AC nên bốn điểm I, K, C, A đồng phẳng.

+) C đúng do việc ta phân tích:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+) D sai do giá của ba vectơ Đề thi Học kì 2 Toán 11 có đáp án (Đề 4) đều song song hoặc trùng với mặt phẳng (ABCD). Do đó, theo định nghĩa sự đồng phẳng của các vectơ, ba vectơ trên đồng phẳng.

31 tháng 3 2017

Lời giải:

a) Tứ giác DBB'D' là hình bình hành nên  BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).

Từ đó suy ra ( BDA') //B'D'C).

b) Gọi {G_{1}}^{}, {G_{2}}^{} là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\)\(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC'  đi qua trọng tâm của hai tam giác BDA' và B'D'C.

c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
 

31 tháng 3 2017

d) (A'IO) ≡ (AA'C'C) suy ra thiết diện là AA'C'C

17 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi G và G' lần lượt là trọng tâm các tam giác PQR và P'Q'R'.

Theo câu a) ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 G trùng với G'

Vậy hai tam giác PQR và P'Q'R' có cùng trọng tâm.

9 tháng 5 2018

Đáp án B

Gọi O là tâm của hình chữ nhật ABCD thì  O O ' = 3 a

V O ' A B C D = 1 3 O O ' . A B . A D = 2 a 3

24 tháng 1 2019

Chọn A.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

2 tháng 10 2017

15 tháng 11 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + A’D’ // BC và A’D’ = BC

⇒ A’D’CB là hình bình hành

⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)

+ BB’ // DD’ và BB’ = DD’

⇒ BDD’B’ là hình bình hành

⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)

A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)

Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).

b) Gọi O = AC ∩ BD

+ Ta có: O ∈ AC ⊂ (AA’C’C)

⇒ A’O ⊂ (AA’C’C).

Trong (AA’C’C), gọi A’O ∩ AC’ = G1.

G1 ∈ A’O ⊂ (A’BD)

⇒ G1 ∈ AC’ ∩ (BDA’).

+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’

⇒ A’I = IC.

⇒ AI là trung tuyến của ΔA’AC

⇒   G 1   =   A ’ O   ∩   A C ’ là giao của hai trung tuyến AI và A’O của ΔA’AC

⇒   G 1  là trọng tâm ΔA’AC

⇒   A ’ G 1   =   2 . A ’ O / 3

⇒   G 1  cũng là trọng tâm ΔA’BD.

Vậy AC' đi qua trọng tâm G 1  của ΔA’BD.

Chứng minh tương tự đối với điểm G 2 .

c) *Vì G 1  là trọng tâm của ΔAA’C nên A G 1 / A I   =   2 / 3 .

Vì I là trung điểm của AC’ nên AI = 1/2.AC’

Từ các kết quả này, ta có : A G 1   =   1 / 3 . A C ’

*Chứng minh tương tự ta có : C ’ G 2   =   1 / 3 . A C ’

Suy ra : A G 1   =   G 1 G 2   =   G 2 C ’   =   1 / 3 . A C ’ .

d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.