K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

- Tọa độ tiếp điểm: x 0   =   - 1   ⇒   y 0   =   - 5 . Tiếp điểm M( -1; -5).

- Hệ số góc của tiếp tuyến:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 4)

→ Tiếp tuyến tại điểm có hoành độ x 0   =   - 1  có phương trình:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 4)

Chọn A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)

Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0

b)    \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)

Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)

c)     \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)

Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)

Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)

Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)

14 tháng 7 2018

Đáp án B

Ta có y = x + 2 x + 1 ⇒ y ' = − 1 x + 1 2 ⇒ y ' 0 = − 1  và  y 0 = 2

Suy ra phương trình tiếp tuyến cần tìm là y − 2 = − 1 x − 1 ⇔ y = 2 − x .  

Bài 1: Viết phương trình đồ thị hàm sốa) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0Bài 2: Viết phương trình tiếp tuyến với:a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1Bài 3: Viết phương trình tiếp tuyến với:a)...
Đọc tiếp

Bài 1: Viết phương trình đồ thị hàm số

a) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)

b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0

Bài 2: Viết phương trình tiếp tuyến với:

a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1

b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4

c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1

Bài 3: Viết phương trình tiếp tuyến với:

a) Đường cong (C): \(y=\dfrac{1}{3}3x^3-2x^2+3x+1\) biết tiếp tuyến song song đường thẳng \(y=\dfrac{-3}{4}x\)

b) Đường cong (C): \(y=\dfrac{x^2+3x+1}{-x-2}\) biết tiếp tuyến song song với đường thẳng 2x+y-5=0

Bài 4: Cho đường cong (C): \(y=\dfrac{x^2-2x+2}{x-1}\). Viết phương trình tiếp tuyến của (C) biết:

a) Tại điểm có hoành độ bằng 6

b) Song song với đường thẳng \(y=-3x+29\)

c) Vuông góc với đường thẳng \(y=\dfrac{1}{3}x+2\)

Bài 5: Cho hàm số \(y=\dfrac{3x-2}{x-1}\) (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C) biết:

a) Tiếp tuyến đi qua A(2;0)

b) Tiếp tuyến tạo với trục hoành 1 góc 45°

Mình làm xong hết rồi nhưng mà không biết đúng hay không. Nhờ mọi người giải giúp mình để mình thử đối chiếu đáp án được không ạ?

 

 

0
23 tháng 4 2020

hello các bạn

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)

Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)

25 tháng 11 2019

- Gọi M ( x 0   ;   y 0 )  là tọa độ tiếp điểm.

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Vậy phương trình tiếp tuyến cần tìm là :

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

Chọn A

6 tháng 12 2018

- Gọi M ( x 0 ;   y 0 )  là tọa độ tiếp điểm.

- Ta có :

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Vậy phương trình tiếp tuyến cần tìm là

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn A.

27 tháng 2 2018

- Gọi x 0 ;   y 0 là tọa độ tiếp điểm.

- Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Vậy phương trình tiếp tuyến cần tìm là:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn D.

30 tháng 6 2018

Đáp án A.

Phương pháp: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = x0 là 

Cách giải: TXĐ: D = R

Ta có 

=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 0 là: