Phương trình tiếp tuyến với đồ thị y = x 3 - 2 x 2 + x - 1 tại điểm có hoành độ x 0 = - 1 là:
A. y = 8x+3
B. y = 8x+7
C. y = 8x+8
D. y = 8x+11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)
Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0
b) \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)
Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)
c) \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)
Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)
Đáp án B
Ta có y = x + 2 x + 1 ⇒ y ' = − 1 x + 1 2 ⇒ y ' 0 = − 1 và y 0 = 2
Suy ra phương trình tiếp tuyến cần tìm là y − 2 = − 1 x − 1 ⇔ y = 2 − x .
Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)
Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm.
- Ta có:
- Vậy phương trình tiếp tuyến cần tìm là :
Chọn A
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm.
- Ta có :
- Vậy phương trình tiếp tuyến cần tìm là
Chọn A.
- Gọi x 0 ; y 0 là tọa độ tiếp điểm.
- Ta có:
- Vậy phương trình tiếp tuyến cần tìm là:
Chọn D.
Đáp án A.
Phương pháp: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = x0 là
Cách giải: TXĐ: D = R
Ta có
=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 0 là:
- Tọa độ tiếp điểm: x 0 = - 1 ⇒ y 0 = - 5 . Tiếp điểm M( -1; -5).
- Hệ số góc của tiếp tuyến:
→ Tiếp tuyến tại điểm có hoành độ x 0 = - 1 có phương trình:
Chọn A