OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
🔥OLM: CHUẨN BỊ NĂM HỌC MỚI KHÔNG LO CHẬM NHỊP!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nghiệm chung của hai phương trình: 4 cos 2 x - 3 = 0
và 2sinx + 1 = 0 trên khoảng - π 2 ; 3 π 2 bằng:
A. 4
B. 2
C. 3
D. 1
Chọn B
Sử dụng các công thức giải phương trình lượng giác cơ bản:
Số nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2sinx + l = 0 trên khoảng (-π/2;3π/2) là?
A. 4.
B. 1.
C. 2.
D. 3.
Chọn đáp án C.
Số nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2 sin x + 1 = 0 trên khoảng - π 2 ; 3 π 2 bằng:
A. 2
B. 4
Số nghiệm chung của hai phương trình: 4 cos 2 x - 3 = 0 và 2 sin x + 1 = 0 trên khoảng - π 2 ; 3 π 2 bằng:
Số nghiệm chung của hai phương trình: 4 cos 2 x − 3 = 0 và 2 sin x + 1 = 0 trên khoảng − π 2 ; 3 π 2 bằng:
Đáp án B
Phương pháp:
Số nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2 sin x + 1 = 0 trên khoảng ( - π 2 ; 3 π 2 ) bằng
Số nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2 sin x + 1 = 0 trên khoảng - π 2 ; 3 π 2 là
B. 1
C. 2
D. 3
Sô nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2sinx+1=0 trên khoảng - π 2 ; 3 π 2 là:
Đáp án C
Vậy 2 pt trên có 2 họ nghiệm chung là:
Số nghiệm chung của hai phương trình 4 cos 2 x - 3 = 0 và 2 sin x + 1 = 0 trên khoảng - π 2 ; 3 π 2 là:
Chọn B
Sử dụng các công thức giải phương trình lượng giác cơ bản: