Giá trị nhỏ nhất của hàm số y = sin2 x- 4sinx – 5 là
A. – 20
B. – 8
C.0
D.9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)
\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)
\(f'\left(x\right)=0\)
=>\(cosx\left(sinx+2\right)=0\)
=>\(cosx=0\)
=>\(x=\dfrac{\Omega}{2}+k\Omega\)
mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)
nên \(x=\dfrac{\Omega}{2}\)
\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)
=1+4-5=0
\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)
=>Chọn D
Chọn C.
Khi đó, bài toán trở thành tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
trên đoạn [0;1]
Do đó giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số đã cho là 4 2 - 1 và 7
Đáp án D
Đáp án B
Ta có y = 4 sin x − 3 cos x = 5 4 5 sinx − 3 5 cos x = 5 sin x − α với sin α = 3 5 cos α = 4 5
Ta có − 1 ≤ sin x − α ≤ 1 ⇒ − 5 ≤ 5 sin x − α ≤ 5 ⇒ M = 5 m = − 5
Ta có : y = sin2x – 4sinx – 5= (sinx- 2)2 - 9
Vậy giá trị nhỏ nhất của hàm số là - 8
Đáp án B