K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

Chọn C.

14 tháng 5 2017

Đáp án B.

13 tháng 5 2018

Đáp án A

Ta có

26 tháng 6 2019

Đáp án A.

22 tháng 7 2018

Chọn D.

Ta có 

Vậy F(x)= 1 2 x 2 + x + 1

13 tháng 12 2018

Đáp án A

NV
30 tháng 12 2021

\(\int\dfrac{3x-1}{x^2-x}dx=\int\dfrac{\dfrac{3}{2}\left(2x-1\right)+\dfrac{1}{2}}{x^2-x}dx=\dfrac{3}{2}\int\dfrac{2x-1}{x^2-x}dx+\dfrac{1}{2}\int\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)dx\)

\(=\dfrac{3}{2}ln\left|x^2-x\right|+\dfrac{1}{2}ln\left|\dfrac{x-1}{x}\right|+C\)

29 tháng 3 2018

NV
11 tháng 3 2022

Từ giả thiết: \(\int f\left(x\right).e^{2x}dx=x.e^x+C\)

Đạo hàm 2 vế:

\(\Rightarrow f\left(x\right).e^{2x}=e^x+x.e^x\)

\(\Rightarrow f\left(x\right)=\dfrac{e^x+x.e^x}{e^{2x}}=\dfrac{x+1}{e^x}\)

Xét \(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2.e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=f\left(x\right).e^{2x}-2\int f\left(x\right).e^{2x}dx=\left(\dfrac{x+1}{e^x}\right)e^{2x}-2.x.e^x+C\)

\(=\left(1-x\right)e^x+C\)

12 tháng 1 2018

Đáp án C.

10 tháng 10 2019

Đáp án C