K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

Đáp án C

Phương pháp:

Xác định khoảng mà tại đó y' ≤ 0, dấu “=” xảy ra ở hữu hạn điểm.

Cách giải:

 

Hàm số nghịch biến trên khoảng (-2;0)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

10 tháng 11 2017

a: y'=-4x^3+8*2x

=-4x^3+16x

y'>0 khi -4x^3+16x>0

=>-4x(x^2-4)>0

=>x(x^2-4)<0

=>x<-2; 0<x<2

Vậy: Khi x<-2 hoặc 0<x<2 thì hàm số đồng biến

y'<0 khi -4x^3+16x<0

=>-2<x<0; x>2

Vậy: Khi -2<x<0 hoặc x>2 thì hàm số nghịch biến

b: y'=4x^3

y'>0 khi x>0

=>Khi x>0 thì hàm số đồng biến

y'<0 khi 4x^3<0

=>x<0

=>Khi x<0 thì hàm số nghịch biến

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Vẽ đồ thi \(y = 3{x^2} - 10x + 7\)

- Có đỉnh \(\)\(I\left( {\frac{5}{3}; - \frac{4}{3}} \right)\), có trục đối xứng là đường thẳng \(x = \frac{5}{3}\)

- Đi qua điểm \((0;7);\left( {1;0} \right)\)

- Hàm số nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{3}} \right)\); đồng biến trên khoảng \(\left( {\frac{5}{3}; + \infty } \right)\)

- Giá trị nhỏ nhất của hàm số là tại điểm có tọa độ \(\left( {\frac{5}{3}; - \frac{4}{3}} \right)\)

12 tháng 11 2023

1: TXĐ: D=R\{3}

\(y=\dfrac{x^2-6x+10}{x-3}\)

=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)

Đặt y'<=0

=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)

=>\(x^2-6x+8< =0\)

=>(x-2)(x-4)<=0

=>2<=x<=4

Vậy: Khoảng đồng biến là [2;3) và (3;4]

a: y'=3x^2-3*2x=3x^2-6x=3x(x-2)

y'>0 khi x(x-2)>0

=>x>2 hoặc x<0

=>Khi x>2 hoặc x<0 thì hàm số đồng biến

y'<0 khi x(x-2)<0

=>0<x<2

=>Khi 0<x<2 thì hàm số nghịch biến

b: y'=-3x^2+3

y'>0 khi -3x^2+3>0

=>-3x^2>-3

=>x^2<1

=>-1<x<1

Khi -1<x<1 thì hàm số đồng biến

y'<0 khi x^2>1

=>x>1 hoặc x<-1

Vậy: Khi x>1 hoặc x<-1 thì hàm số nghịch biến

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - 1; + \infty } \right)\) nên hàm số đồng biến trong khoảng \(\left( { - 1; + \infty } \right)\). Trong khoảng \(\left( { - \infty ; - 1} \right)\)  thì hàm số nghich biến.

Bảng biến thiên:

b) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - \infty ;1} \right)\) nên hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\). Trong khoảng \(\left( {1; + \infty } \right)\)  thì hàm số nghịch biến.

Bảng biến thiên: