Cho số phức z thỏa điều kiện . Tìm khẳng định đúng
A. |z| ≥ 1
B. |z| ≤ 3
C. |z| ≤ 1/3
D. |z| > 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có : 11z10 + 10iz9 + 10iz - 11 = 0.
Hay z9( 11z + 10i) = 11 - 10iz
Hay:
Đặt z = x + yi. Từ (*) suy ra:
Xét các trường hợp:
+ Nếu |z| > 1 thì x2 + y2> 1 nên:G( x; y) =11( x2 + y2) + 102 +220y = 102( x2 + y2) + 21( x2 + y2) + 102 + 220y > 102( x2 + y2) + 112 + 220y = f( x; y)
Do đó |z9 | < 1 ⇒ z < 1 (mâu thuẫn).
+ Nếu |z| < 1 thì x2 + y2 > 1 nên:
G( x; y) = 11( x2 + y2) + 102+220y = 102( x2+ y2) + 21( x2 + y2) + 102+ 220y < 102( x2 + y2) + 112+ 220y = f( x; y)
Suy ra |z9| > 1 ⇒ |z| > 1 (mâu thuẫn).
+ Nếu |z| = 1 thì g( x; y) = f( x; y) (thỏa mãn)
Vậy |z| = 1.
Đáp án A
Em hãy thực hiện câu này theo cả 2 cách nhé!
Vậy tập hợp các điểm biểu diễn số phức z là một đường thẳng có phương trình: 2x - y + 3 = 0
Em thấy, điểm M cách đều hai điểm A, B nên M thuộc đường trung trực của đoạn thẳng AB.
Em có thể tìm phương trình đường trung trực ∆ của đoạn thẳng AB như sau:
AB → = − 4 ; 2 , trung điểm của AB là I − 1 ; 1 , ∆ qua điểm I nhận AB → = − 4 ; 2 làm vectơ pháp tuyến.
Đáp án A
Em hãy thực hiện Câu nay theo cả 2 cách nhé!
Cách 1: Đặt
Cách 2: với M(x;y), A(1;0) và B(-3;2)
Em thấy, điểm M cách đều hai điểm A, B nên M thuộc đường trung trực của đoạn thẳng AB.
Em có thể tìm phương trình đường trung trực ∆ của đoạn thẳng AB như sau:
trung điểm của AB là I(-1;1), ∆ qua điểm I nhận làm vectơ pháp tuyến.
Chọn C.
Ta có: