a/6=b/5 và ab=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xong đống này hơi lâu đấy, thui tui giải cho phần a nhé
Bài giải
Ta có : ab : (a+b) = 5 dư 10
...(Làm các bước trên như câu đầu thầy giải)
Vì a.5 có giá trị lớn nhất 9.5 = 45
\(\Rightarrow\) ... (Tự làm)
Kết quả bằng:
ab = 65
b: =>a=5-b
\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)
\(\Leftrightarrow2b^2-10b+25-13=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)
hay \(b\in\left\{2;3\right\}\)
\(\Leftrightarrow a\in\left\{3;2\right\}\)
\(A^2+B^2=\left(A+B\right)^2-2AB=5\)
\(A^3+B^3=\left(A+B\right)^3-3AB\left(A+B\right)=9\)
\(A^5+B^5=\left(A^2+B^2\right)\left(A^3+B^3\right)-\left(AB\right)^2\left(A+B\right)=5.9-2^2.3=...\)
B.
\(A^2+B^2=\left(A+B\right)^2-2AB=2\)
\(A^6+B^6=\left(A^2\right)^3+\left(B^2\right)^3=\left(A^2+B^2\right)^3-3\left(AB\right)^2\left(A^2+B^2\right)=2^3-3.1^2.2=...\)
Ta có: \(A^2+B^2=\left(A+B\right)^2-2AB=3^2-2.2=5\)
\(A^5+B^5=\left(A^3+B^3\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=\left(A+B\right)\left(A^2-AB+B^2\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=3\left(5-2\right).5-2^2.3=33\)
Tìm a,b,c biết: ab/a+b=6/5,bc/b+c=8/15 và ca/c+a=10/7.
(Lưu ý:Cố gắng giải kĩ giất,dễ hiểu nhất nha!)
***********\(\frac{\left[\right]\left[\right]\left[\right]\left[\right]}{0-----0}\)bus
a)ab=4(a+b)+6
10a+b=4a+4b+6
10a-4a=4b-b+6
6a=3b+6
6(a-1)=3b
2(a-1)=b
=>a=1;b=0 a=2;b=2 a=3;b=4 a=4;b=6
a=5;b=8
Vậy ab thuộc{10;22;34;46;58}