K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

mình đang cần gấp

7 tháng 11 2021

x-1/5=2/3:1/2

x-1/5=2/3x2=4/3

x      =4/3+1/5

x      =24/15

20 tháng 3 2023

`x xx 6/7=5/14`

`=>x=5/14:6/7`

`=>x=5/14xx7/6`

`=>x=35/84`

`=>x=5/12`

Vậy `x=5/12`

__

`x:2/3=4/9`

`=>x=4/9xx2/3`

`=>x=8/27`

Vậy `x=8/27`

__

`x-1/4=3/2`

`=>x=3/2+1/4`

`=>x=6/4+1/4`

`=>x=7/4`

Vậy `x=7/4`

__

`x+4/5=8/9`

`=>x=8/9-4/5`

`=>x=40/45-36/45`

`=>x=4/45`

Vậy `x=4/45`

20 tháng 3 2023

\(x\cdot\dfrac{6}{7}=\dfrac{5}{14}\)

\(x\)         \(=\dfrac{5}{14}:\dfrac{6}{7}\)

\(x\)           \(=\dfrac{5}{12}\)

\(x:\dfrac{2}{3}=\dfrac{4}{9}\)

\(x\)        \(=\dfrac{4}{9}\cdot\dfrac{2}{3}\)

\(x\)          \(=\dfrac{8}{27}\)

\(x-\dfrac{1}{4}=\dfrac{3}{2}\)

\(x\)          \(=\dfrac{3}{2}+\dfrac{1}{4}\)

\(x\)            \(=\dfrac{7}{4}\)

\(x+\dfrac{4}{5}=\dfrac{8}{9}\)

\(x\)          \(=\dfrac{8}{9}-\dfrac{4}{5}\)

\(x\)            \(=\dfrac{4}{45}\)

Bài 1: 

Ta có: \(x-35\%\cdot x=\dfrac{1}{25}\)

\(\Leftrightarrow65\%\cdot x=\dfrac{1}{25}\)

\(\Leftrightarrow x=\dfrac{1}{25}:\dfrac{13}{20}=\dfrac{1}{25}\cdot\dfrac{20}{13}=\dfrac{4}{65}\)

Vậy: \(x=\dfrac{4}{65}\)

Bài 2: 

a) Ta có: \(17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)\)

\(=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)

\(=11+\dfrac{2}{31}-\dfrac{15}{17}\)

\(=\dfrac{5366}{527}\)

19 tháng 7 2017

Ta có : 7(x - 1) + 2x(x - 1) = 0

<=> (2x + 7)(x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}2x+7=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=-7\\x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=1\end{cases}}\)

19 tháng 7 2017

1, =1

2, =0

3, ko có số nào cả

22 tháng 7 2023

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

22 tháng 7 2023

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

24 tháng 1 2017

Nhiều quá vại :( giải 1,2 câu thôi nhé

a) 

<=> 2x - 4 - 3 = x + 2

<=> 2x - x      = 2 + 4 + 3

<=>   x          = 9

d) (9x +3)^2 = 16

<=> (9x + 3)^2 = 4^2

<=> 9x + 3       = 4

<=> 9x             = 4 - 3

<=> 9x             = 1

<=>  x             = 1 : 9

<=> x              = 1/9

24 tháng 1 2017

thank

`@` `\text {Ans}`

`\downarrow`

`c)`

`( 34 - 2x ) . ( 2x - 6 ) = 0`

`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)

Vậy, `x \in {17; 3}`

`d)`

`( 2019 - x ) . ( 3x - 12 ) =0` `?`

`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)

Vậy, `x \in {2019; 4}`

`e) `

`57 . ( 9x - 27 ) = 0`

`=>`\(9x-27=0\div57\)

`=> 9x - 27 = 0`

`=> 9x = 27`

`=> x = 27 \div 9`

`=> x = 3`

Vậy, `x = 3`

`f)`

`25 + ( 15 - x ) = 30`

`=> 15 - x = 30 - 25`

`=> 15 - x = 5`

`=> x = 15 -5 `

`=> x = 10`

Vậy, `x = 10`

`g) `

`43 - ( 24 - x ) = 20`

`=> 24 - x = 43 - 20`

`=> 24 - x = 23`

`=> x = 24 - 23`

`=> x = 1`

Vậy, `x = 1`

`h) `

`2 . ( x - 5 ) - 17 = 25`

`=> 2 ( x - 5) = 25+17`

`=> 2 ( x - 5) = 42`

`=> x - 5 = 42 \div 2`

`=> x - 5 = 21`

`=> x = 21 + 5`

`=> x = 26`

Vậy, `x = 26`

`i)`

`3 . ( x + 7 ) - 15 = 27`

`=> 3(x + 7) = 27 + 15`

`=> 3(x + 7) = 42`

`=> x +7 = 42 \div 3`

`=> x + 7 = 14`

`=> x = 14 - 7`

`=> x = 7`

Vậy, `x = 7`

`j)`

`15 + 4 . ( x - 2 ) = 95`

`=> 4(x - 2) = 95 - 15`

`=> 4(x - 2) = 80`

`=> x - 2 = 80 \div 4`

`=> x - 2 = 20`

`=> x = 20 + 2`

`=> x = 22`

Vậy, `x = 22`

`k)`

`20 - ( x + 14 ) = 5`

`=> x + 14 = 20 - 5`

`=> x + 14 = 15`

`=> x = 15 - 14`

`=> x = 1`

Vậy, `x = 1`

`l) `

`14 + 3 . ( 5 - x ) = 27`

`=> 3(5 - x) = 27 - 14`

`=> 3(5 - x) = 13`

`=> 5 - x = 13 \div 3`

`=> 5 - x = 13/3`

`=> x = 5- 13/3`

`=> x = 2/3`

Vậy, `x = 2/3.`

`@` `\text {Kaizuu lv uuu}`

9 tháng 7 2023

nhanh mik tick cho nha

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

25 tháng 10 2020

a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)

ĐK : x ≥ 0

⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)

⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)

⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)

⇔ \(-3\sqrt{x}=-5\)

⇔ \(\sqrt{x}=15\)

⇔ \(x=225\)( tm )

b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)

ĐK : x ≤ 3

⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)

⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)

⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)

⇔ \(3\sqrt{3-x}=6\)

⇔ \(\sqrt{3-x}=2\)

⇔ \(3-x=4\)

⇔ \(x=-1\)( tm )

c) \(\sqrt{9x^2+12x+4}=4\)

⇔ \(\sqrt{\left(3x+2\right)^2}=4\)

⇔ \(\left|3x+2\right|=4\)

⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)

d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)

ĐK : x ≥ 1

⇔  \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\sqrt{x-1}=1\)

⇔ \(x-1=1\)

⇔ \(x=2\)( tm )